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One slide version
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Challenges in practice

Model parameter uncertainty

Prior knowledge

Observation error bars

More than two classes – how to measure separation?

Others I will mention at the end . . .

3 / 16



Two class setup

Data / model:

Classes: C1 and C2, with prior probabilities π1 and π2 (sum to one)

Task: choose times to observed a lightcurve, t = (t1, . . . , tn)

Magnitudes x = (x1, . . . , xn) are then observed

Models: f(x|Ci, t, θi), unknown θi, for i = 1, 2

Method:

Bayesian comparison: BF(x|C1, C2) =
f(x|C1,t)
f(x|C2,t)

=

∫
Θ1

f(x|C1,t,θ1)π(θ1|C1)dθ1∫
Θ2

f(x|C2,t,θ2)π(θ2|C2)dθ2

Question: how should we choose t?

Usual design perspective is to maximize some criterion / information measure
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Statistical information for decision problems, Jones and Meng (2016+)

Generalized variance of Bayes factor

V = evidence function (concave)

V(BF) = evidence for C1

IV(t;C1, C2, π) = Initial evidence for C1 − Expected posterior evidence for C1

= V(1)− EX [V(BF(X|C1, C2))|C2]

Usual variance if V(BF) = −(BF− 1)2

V(BF) = log(BF) gives KL(f(·|C2, t)||f(·|C1, t)) (Nicolae et al. (2008))
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Statistical information for decision problems, Jones and Meng (2016+)

Sequential version

Observed magnitudes xob at times tob

Want to schedule new observation Xnew for time tnew

IV(tnew|tob, xob) = Observed evidence for C1 − Expected complete data evidence for C1

= V(BF(xob|C1, C2))− EXnew [V(BF(xob, Xnew|C1, C2))|C2, xob]
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Statistical information for decision problems, Jones and Meng (2016+)

Appealing choice: V(BF) = BF/(π2 + π1BF)=P (C1|x,t)
π1

Sequential information:

IV(tnew|tob, xob) =
current probability for C1 − expected new probability for C1

prior probability for C1

Scheduling method: choose tnew that maximizes IV(tnew|tob, xob)
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Statistical information for decision problems, Jones and Meng (2016+)

Coherence identity

If V satisfies

Evidence for C1

Evidence for C2
=
V(BF;C1, C2)

V(1/BF;C2, C1)
= BF

then the following coherence identity holds

IV(tnew|tob, xob;C1, C2) = BF(xob)IV(tnew|tob, xob;C2, C1)

⇒ the optimal time to collect new data does not depend on the true class
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m classes

Ideas can be extended in two ways:

1 Compare all pairs (under a hierarchy)

m∑
i=2

i−1∑
j=1

IV(tnew|tob, xob;Cj , Ci)

2 Compare each class to a baseline class

m∑
i=1

IV(tnew|tob, xob;CB , Ci)P (Ci|tob, xob)

Box and Hill (1967) is a special case
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Data

MACHO lightcurve catalog subset

Periodic sources

66 Cepheids, 180 eclipsing binaries, 266 RR Lyrae variables
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Gaussian Process Model (what we called f(x|Ci, t, θi))

Magnitudes:

(X1, . . . , Xn) ∼ N(µ1n, D + V )

where µ = mean magnitude

Covariance matrix D + V :
1 Observation errors: D = diag(s21, . . . , s

2
n)

2 Periodic kernel: Vij = σ2 exp

(
−βsin

(
π(ti−tj)

τ

)2)
for i, j ∈ {1, . . . , n}

τ = period
σ = standard deviation around the mean
β = inverse length-scale (inverse relaxation time)

Note:
Same model f(x|Ci, t, θ) for each class C1, C2, C3

Different prior distribution on parameters θ = (µ, ln τ, lnσ, lnβ)
⇒ f(x|Ci, t) depends on class
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Empirical priors from training data

Training data fits: Maximum likelihood parameter fits for half the lightcurves
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Simple construction of class specific priors:
1 θ̂

(j)
train(C): training data fit for class C source j

2 Mean(θ̂train(C)): training data mean fit for class C
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Empirical priors from training data

Training data fits: Maximum likelihood parameter fits for half the lightcurves
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Example
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Results: posterior probability based classification

Real obs:

After first new obs.:

ceph eb rr
ceph 27 6 0
eb 10 55 25
rr 0 34 99

After all 5 new obs.:

ceph eb rr
ceph 29 2 0
eb 8 60 22
rr 0 31 102

Selected obs:

ceph eb rr
ceph 28 5 0
eb 10 56 24
rr 0 34 99

ceph eb rr
ceph 31 2 0
eb 5 66 19
rr 0 26 107

∼ 7% improvement after 5 steps
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Analysis Extensions and Summary

Analysis extension:

Additional model flexibility e.g. class specific, changing period / damping

Include different types of classes e.g. non-periodic, event-based

Incorporate additional wavelength information e.g. Mandel (2009)

Penalize longer wait times until next observation

Improve computational efficiency

Summary

Astrostatistics loop

Design for decision problems

Return to lightcurve problem

Future: design for estimation and decision problems
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Thanks!
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