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One slide version
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Challenges in practice

@ Model parameter uncertainty

@ Prior knowledge

@ Observation error bars

@ More than two classes — how to measure separation?
@ Others | will mention attheend . ..



Two class setup

Data / model:
@ Classes: C; and Cs, with prior probabilities 71 and 72 (sum to one)
@ Task: choose times to observed a lightcurve, t = (1, ..., )
@ Magnitudes x = (z1,...,z,) are then observed
@ Models: f(z|Cj,t,6;), unknown 6;, for i = 1,2



Two class setup

Data / model:
@ Classes: C; and Cs, with prior probabilities 71 and 72 (sum to one)
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@ Magnitudes x = (z1,...,z,) are then observed
@ Models: f(z|Cj,t,6;), unknown 6;, for i = 1,2

Method:

. . z o, f(|C1,t,01)m(61]C1)do
@ Bayesian comparison: BF(z|C1, C2) = falCrt) _ Jo, JOLL0)T (010 d0n

T f@IC2t) T [fe, f(@]Cat,02)m(02]C2)dos

@ Question: how should we choose ¢?
@ Usual design perspective is to maximize some criterion / information measure



Statistical information for decision problems, Jones and Meng (2016+)

Generalized variance of Bayes factor

@ V = evidence function (concave)
@ V(BF) = evidence for C;

Iy (t; C1, Co, ) = Initial evidence for C1 — Expected posterior evidence for C
= V(1) — Ex[V(BF(X|C1, C2))|Cs]




Statistical information for decision problems, Jones and Meng (2016+)

Generalized variance of Bayes factor

@ V = evidence function (concave)
@ V(BF) = evidence for C;

Iy (t; C1, Co, ) = Initial evidence for C1 — Expected posterior evidence for C
= V(1) — Ex[V(BF(X|C1, C2))|Cs]

@ Usual variance if V(BF) = —(BF — 1)?
@ V(BF) = log(BF) gives KL(f(:|C2,t)||f(:|C1,t)) (Nicolae et al. (2008))



Statistical information for decision problems, Jones and Meng (2016+)

Sequential version
@ Observed magnitudes xq, at times top
@ Want to schedule new observation Xnew for time tnew
Zy (tnew|ton, Tob) = Observed evidence for C1 — Expected complete data evidence for C
= V(BF(@0b|C1, C2)) — Expou [V(BF (Zob, Xnew|C1, C2))|Ca, Tob)]




Statistical information for decision problems, Jones and Meng (2016+)

Appealing choice: V(BF) = BF /(> + 1 BF)= 2120
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current probability for C7 — expected new probability for C'y
prior probability for C

Iy (tnew | tob, xob)



Statistical information for decision problems, Jones and Meng (2016+)

Appealing choice: V(BF) = BF /(> + 1 BF)= 2120
@ Sequential information:

current probability for C7 — expected new probability for C'y
prior probability for C

Iy (tnew | tob, xob)

@ Scheduling method: choose tnew that maximizes Zy (tnew|tob, Tob)



Statistical information for decision problems, Jones and Meng (2016+)

Coherence identity

If V satisfies

Evidence for C;  V(BF;C:1,C2) BE
Evidence for Co ~ V(1/BF;C2,C1)

then the following coherence identity holds

Iy (tnew|tob7 Zob) Ch, 02) = BF(xob)IV (tnew|t0b7 Zob; Co, Cl)

= the optimal time to collect new data does not depend on the true class




m classes

Ideas can be extended in two ways:

@ Compare all pairs (under a hierarchy)

m i—1

Z ZI\) (tnew|tob7 Lob) C]', Ci)

i=2 j=1
@ Compare each class to a baseline class
Z Iv(tnew|tob, Zob; OB, Ci)P(Ci|tob, xob)
i=1

Box and Hill (1967) is a special case



@ MACHO lightcurve catalog subset
@ Periodic sources
@ 66 Cepheids, 180 eclipsing binaries, 266 RR Lyrae variables

™~ P ™~
o 1 Fawdandm &% g o e o o
1| %880 250 o et ) I
| é%ig %00 QF%g 6o ©F o oo "g
o
@’“sfq‘%’ o %y cq,uc e}% & o ®
() 56 coBe &b @ Sy 0 [0}
T o | Rwheoa o, %2 % B oo T o
. ° ® 0 ° ° -
= o0 0 =
T SUe%meh B 4 o | EQ
O 7 |nnglLe & & o2 o o, IS}
8 |8 @ 3 @&;&g % o% o o g |
o o
= o, 5 o bo % Fpo B =
| o o8 %2 Fo el & % 8o XY
M s e e o . ™
) o® 0%9° ° 2 8 9 5
S e e #e %ﬁ AN ISR A S
I o I
T T T T T
0 500 1500 2500
Time (Days)

10/16



Gaussian Process Model (what we called f(z|C;,t,6;))

Magnitudes:
(X1,...,Xn) ~N(ul,,D+YV)

where 1 = mean magnitude
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Gaussian Process Model (what we called f(z|C;,t,6;))

Magnitudes:
(X1,...,Xn) ~ N(uln,D+V)
where 1 = mean magnitude

Covariance matrix D + V:
@ Observation errors: D = diag(s3, ..., s2)

N2
@ Periodic kernel: Vi; = o2 exp [ —Bsin (2=t fori,j € {1,...,n
J T
e 7 = period

e o = standard deviation around the mean
e [ =inverse length-scale (inverse relaxation time)
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Gaussian Process Model (what we called f(z|C;, t, 6;))

Magnitudes:
(X1,...,Xn) ~ N(uln,D+V)

where 1 = mean magnitude

Covariance matrix D + V:

@ Observation errors: D = diag(s3, ..., s2)
N2
@ Periodic kernel: Vi; = o exp (—Bsin (M) ) fori,j € {1,...,n}
o 7 = period

e o = standard deviation around the mean
e [ =inverse length-scale (inverse relaxation time)

Note:

Same model f(z|C;,t,0) for each class C1, Ca, C3

Different prior distribution on parameters § = (u,In7,Ino,1n 3)
= f(z|C;,t) depends on class
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Empirical priors from training data

Training data fits: Maximum likelihood parameter
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Empirical priors from training data

Training data fits:

Mean ()

-10

Simple construction of class specific priors:

o
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@ Mean (byain(c)): training data mean fit for class C
@ CoV(fyain()): training data estimated covariance matrix for class C

(%]

Priors

0|C' ~ N (Mean(Byain(c)), COV(Braincc)))
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for C € {ceph, eb, rr}
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Results: posterior probability based classification

After first new obs.: After all 5 new obs.:

ceph eb rr ceph eb rr

Real obs: ceph | 27 6 0 ceph | 29 2 0
eb 10 55 25 eb 8 60 22
re 0 34 99 re 0 31 102

ceph eb rr ceph eb re

. | ceph | 28 5 0 ceph | 31 2 0

Selected obs: | o) 10 56 24 eb 5 66 19
re 0 34 99 re 0 26 107

~ 7% improvement after 5 steps
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Analysis Extensions and Summary

Analysis extension:

@ Additional model flexibility e.g. class specific, changing period / damping
@ Include different types of classes e.g. non-periodic, event-based
@ Incorporate additional wavelength information e.g. Mandel (2009)
@ Penalize longer wait times until next observation
@ Improve computational efficiency
Summary

@ Astrostatistics loop

@ Design for decision problems

@ Return to lightcurve problem

@ Future: design for estimation and decision problems
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Thanks!
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