SPARSITY TO THE RESCUE OF 3D WEAK LENSING MASS-MAPPING STATISTICAL CHALLENGES IN MODERN ASTRONOMY VI

François Lanusse

Carnegie Mellon University

June 6, 2016

Carnegie Mellon University McWilliams Center for Cosmology

THE 3D MASS-MAPPING PROBLEM

GRAVITATIONAL LENSING BY A MASSIVE CLUSTER

2D MASS MAPPING

Shear γ DEC [arcmin] RA [arcmin]

2D MASS MAPPING

2D MASS MAPPING

$$\gamma = \mathsf{P} \; \kappa$$

PROBING THE MATTER DISTRIBUTION IN 3D

DEFLECTION OF LIGHT RAYS CROSSING THE UNIVERSE, EMITTED BY DISTANT GALAXIES

SIMULATION: COURTESY MC GROUP, S. COLOMBI, IAP

PROBING THE MATTER DISTRIBUTION IN 3D

DEFLECTION OF LIGHT RAYS CROSSING THE UNIVERSE, EMITTED BY DISTANT GALAXIES

5

PROBING THE MATTER DISTRIBUTION IN 3D

DEFLECTION OF LIGHT RAYS CROSSING THE UNIVERSE, EMITTED BY DISTANT GALAXIES

THE 3D RECONSTRUCTION PROBLEM

P and Q are the tangential and line of sight lensing operators

THE 3D RECONSTRUCTION PROBLEM

P and Q are the tangential and line of sight lensing operators

Difficulty of 3D mass-mapping

- P is non-invertible when the shear is irregularly sampled
- Q is ill-posed, direct inversion impossible

WIENER FILTER RECONSTRUCTION OF ABELL901/902

from Simon et al. (2012)

SPARSE REGULARISATION FOR 2D MAPP-PING

FOURIER INVERSION

$$\gamma_1 = rac{1}{2}(\partial_1^2 - \partial_2^2) \ \Psi \qquad \gamma_2 = \partial_1 \partial_2 \ \Psi \qquad \kappa = rac{1}{2}(\partial_1^2 + \partial_2^2) \ \Psi$$

• Explicit solution in Fourier space:

$$\hat{\kappa} = \frac{k_1^2 - k_2^2}{k_1^2 + k_2^2} \,\hat{\gamma}_1 + \frac{2k_1k_2}{k_1^2 + k_2^2} \,\hat{\gamma}_2$$

FOURIER INVERSION

$$\gamma_1 = rac{1}{2}(\partial_1^2 - \partial_2^2) \ \Psi \qquad \gamma_2 = \partial_1 \partial_2 \ \Psi \qquad \kappa = rac{1}{2}(\partial_1^2 + \partial_2^2) \ \Psi$$

• Explicit solution in Fourier space:

$$\hat{\kappa}~=\mathsf{P}^*~\hat{\gamma}$$

- Difficulties of the inversion:
 - Irregularly sampled or missing data.
 - Individual measurements extremely noise dominated.

 $\kappa = \mathsf{F}^*\mathsf{P}^*\mathsf{F}\,\gamma$

Shear γ Convergence *k* 10 10 8 DEC [arcmin] DEC [arcmin] 0 ŏ 10 2 8 10 2 6 4 6 RA [arcmin] RA [arcmin] Irregular shear sampling

 $\kappa = F^* P^* FM \gamma$

Shear γ Convergence *k* 8 DEC [arcmin] DEC [arcmin] 6 0 2 8 10 ٥ 4 6 RA [arcmin] RA [arcmin]

Regularly binned shear (0.2 arcmin)

 $\kappa = F^* P^* FM \gamma$

Regularly binned shear (1 arcmin)

 $\kappa = F^* P^* FM \gamma$

From a regularly sampled convergence map κ we compute the shear at each galaxy position: no binning.

$$\gamma = \mathsf{TPF} \ \kappa$$

Non Equispaced Discrete Fourier Transform (NDFT)

Fourier transform from a regular grid to an irregular grid x_l :

$$f = \mathbf{T}\hat{f}$$
 with $T_{lk} = rac{1}{\sqrt{N}}e^{2\pi i k x_l}$

T is no longer directly invertible \Rightarrow Linear inverse problem.

• Extremely analogous to radio-interferometry and MRI

$\underset{\kappa}{\operatorname{arg\,min}} \ \tfrac{1}{2} \parallel \gamma - \mathsf{TPF} \ \kappa \parallel_2^2 \ + \ \lambda \parallel \Phi^* \kappa \parallel_1$

arg min
$$\frac{1}{2} \| \gamma - \mathsf{TPF} \kappa \|_2^2 + \lambda \| \Phi^* \kappa \|_1$$

Input map 10 \times 10 arcmin

Source distribution

Input map 10 \times 10 arcmin

Without regularisation

Input map 10 imes 10 arcmin

Binning + Gaussian Smoothing

Input map 10 \times 10 arcmin

Sparse regularisation

SPARSE REGULARISATION - FULL 2D PROBLEM

Lanusse, Starck, Leonard, Pires (2016)

$$\arg \min_{\boldsymbol{\kappa}, \tilde{\boldsymbol{\mathcal{F}}}} \frac{1}{2} \| C_{\kappa}^{-1} [(1 - Z\mathsf{T}\mathsf{F}^{*}\boldsymbol{\kappa})\boldsymbol{g} - Z\mathsf{T}\mathsf{P}\mathsf{F}^{*}\boldsymbol{\kappa}] \|_{2}^{2} \\ + \frac{1}{2} \| C_{\kappa}^{-1} \left[(1 - Z\mathsf{T}\mathsf{F}^{*}\boldsymbol{\kappa})\boldsymbol{F} - Z\mathsf{T}\mathsf{F}^{*}\tilde{\boldsymbol{\mathcal{F}}} \right] \|_{2}^{2} \\ + \lambda \| \boldsymbol{w} \circ \boldsymbol{\Phi}^{t}\boldsymbol{\kappa} \|_{1} + i_{\mathrm{Im}(\mathsf{R})} \left(\begin{bmatrix} \boldsymbol{\kappa} \\ \tilde{\boldsymbol{\mathcal{F}}} \end{bmatrix} \right)$$

- · Includes reduced shear, reduced flexion, individual redshifts
- Optimally combines shear and flexion
- Tuning of the sparsity constraint based on local noise levels
- Solved using a primal-dual proximal algorithm adapted from (Vu, 2013)

EXTENSION TO THE 3D PROBLEM

SPARSE REGULARISATION OF THE FULL INVERSE PROBLEM

Leonard, Lanusse, Starck (2015) Leonard, Lanusse, Starck (2014) Leonard, Dupe, Starck (2012)

$$\hat{\delta} = \operatorname*{arg\,min}_{\delta} \frac{1}{2} \parallel \gamma - \mathsf{T} \, \mathsf{P} \, \mathsf{F} \, \left[\mathsf{Q} \right] \, \delta \parallel_2^2 + \lambda \parallel \Phi^* \delta \parallel_1$$

SPARSE REGULARISATION OF THE FULL INVERSE PROBLEM

Leonard, Lanusse, Starck (2015) Leonard, Lanusse, Starck (2014) Leonard, Dupe, Starck (2012)

$$\hat{\delta} = \arg\min_{\delta} \frac{1}{2} \| \gamma - \mathsf{T} \, \mathsf{P} \, \mathsf{F} \, \mathsf{Q} \, \delta \|_{2}^{2} + \lambda \| \Phi^{*} \delta \|_{1}$$

Typically solved using FISTA (Fast Iterative Soft Thresholding)

SPARSE REGULARISATION OF THE FULL INVERSE PROBLEM

$$\hat{\delta} = \arg\min_{\delta} \frac{1}{2} \parallel \gamma - \mathsf{T} \mathsf{P} \mathsf{F} \mathbf{Q} \quad \delta \parallel_{2}^{2} + \lambda \parallel \Phi^{*} \delta \parallel_{1}$$

Typically solved using FISTA (Fast Iterative Soft Thresholding)

12

Lanusse, Starck (2016), in prep.

We use the SVD of **Q** to build a preconditioning matrix **N**:

$$\mathbf{Q} = \mathbf{U}\mathbf{S}\mathbf{V}^* \qquad \mathbf{N} = \mathbf{V}\ \overline{\mathbf{S}^{-1}}\ \mathbf{V}^*$$

and we solve the problem:

$$\delta = \mathbf{N} \quad \operatorname*{arg\,min}_{\delta'} \frac{1}{2} \parallel \gamma - \mathbf{P} \mathbf{Q}' \ \delta' \parallel_2^2 + \lambda \parallel \mathbf{\Phi}^* \mathbf{N} \delta' \parallel_1$$

Lanusse, Starck (2016), in prep.

We use the SVD of ${\bf Q}$ to build a preconditioning matrix ${\bf N}:$

$$\mathbf{Q} = \mathbf{U}\mathbf{S}\mathbf{V}^* \qquad \mathbf{N} = \mathbf{V}\ \overline{\mathbf{S}^{-1}}\ \mathbf{V}^*$$

and we solve the problem:

$$\delta = \mathbf{N} \quad \operatorname*{arg\,min}_{\delta'} \frac{1}{2} \parallel \gamma - \mathbf{P} \mathbf{Q}' \ \delta' \parallel_2^2 + \lambda \parallel \Phi^* \mathbf{N} \delta' \parallel_1$$

· Convergence rate improved by orders of magnitudes

Lanusse, Starck (2016), in prep.

We use the SVD of **Q** to build a preconditioning matrix **N**:

$$\mathbf{Q} = \mathbf{U}\mathbf{S}\mathbf{V}^* \qquad \mathbf{N} = \mathbf{V}\ \overline{\mathbf{S}^{-1}}\ \mathbf{V}^*$$

and we solve the problem:

$$\delta = \mathbf{N} \quad \operatorname*{arg\,min}_{\delta'} \frac{1}{2} \parallel \gamma - \mathbf{P} \ \mathbf{Q}' \ \delta' \parallel_2^2 + \lambda \parallel \Phi^* \mathbf{N} \delta' \parallel_1$$

- Convergence rate improved by orders of magnitudes
- Sparsity constraint more complex to compute
 - Fast Spectral Projected Gradient algorithm
 - GP-GPU parallel implementation

ILLUSTRATION ON A CLUSTER FROM THE MICE N-BODY SIMULATIONS

 $10^{15}h^{-1}M_{\odot}$ cluster at z=0.37

Reconstruction using transverse Wiener filter from Simon et al. (2011)

ILLUSTRATION ON A CLUSTER FROM THE MICE N-BODY SIMULATIONS

 $10^{15}h^{-1}M_{\odot}$ cluster at z=0.37

Reconstruction using GLIMPSE

PRELIMINARY RESULTS ON COSMOS

RECONSTRUCTION FROM MASSEY ET AL. (2007)

nature

NEUROBIOLOGY Robots that think they're insects

PANDEMIC FLU Why the 1918 outbreak was so deadly

MOLECULAR MAGNETS An attractive proposition

THE UNSEEN UNIVERSE

Dark matter maps reveal cosmic scaffolding

NATUREJOBS Beating retirement

RECONSTRUCTED 3D DENSITY CONTRAST

Lanusse, Starck (2016), in prep.

ZOOM IN ON A CLUSTER AT REDSHIFT 0.12

CONCLUSION

- Incorporates developments introduced in Lanusse et al. (2016):
 - Handles irregularly distributed galaxies (no binning)
 - Include individual redshift pdfs
 - Accounts for reduced shear
- Tractable optimisation thanks to new algorithm
- Promising preliminary results on real data.
- Open-source software. The 2D version already available at: https://github.com/CosmoStat/Glimpse