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the 3d mass-mapping problem



gravitational lensing by a massive cluster
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2d mass mapping
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2d mass mapping
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γ = P κ
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probing the matter distribution in 3d

5



probing the matter distribution in 3d

γ(z) = P
∫
dz′ Q(z, z′) δ(θ, z′) 5



probing the matter distribution in 3d

γ = P Q δ 5



the 3d reconstruction problem

γ︸︷︷︸
shear

= P Q δ︸︷︷︸
overdensity

+ n︸︷︷︸
noise

P and Q are the tangential and line of sight lensing operators

Difficulty of 3D mass-mapping

• P is non-invertible when the shear is irregularly sampled

• Q is ill-posed, direct inversion impossible
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wiener filter reconstruction of abell901/902

from Simon et al. (2012)
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sparse regularisation for 2d mapp-
ping



fourier inversion

γ1 =
1
2
(∂21 − ∂22) Ψ γ2 = ∂1∂2 Ψ κ =

1
2
(∂21 + ∂22) Ψ

• Explicit solution in Fourier space:

κ̂ =
k21 − k22
k21 + k22

γ̂1 +
2k1k2
k21 + k22

γ̂2

• Difficulties of the inversion:
• Irregularly sampled or missing data.

• Individual measurements extremely noise dominated.
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impact of irregular sampling
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Regular shear sampling

κ = F∗P∗F γ
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impact of irregular sampling
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Irregular shear sampling

κ = F∗P∗FM γ
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impact of irregular sampling
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Regularly binned shear (0.2 arcmin)

κ = F∗P∗FM γ
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impact of irregular sampling
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Regularly binned shear (1 arcmin)

κ = F∗P∗FM γ
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our modeling

From a regularly sampled convergence map κ we compute the
shear at each galaxy position: no binning.

γ = TPF κ

Non Equispaced Discrete Fourier Transform (NDFT)

Fourier transform from a regular grid to an irregular grid xl:

f = Tf̂ with Tlk =
1√
N
e2πikxl

T is no longer directly invertible⇒ Linear inverse problem.

• Extremely analogous to radio-interferometry and MRI 11



sparse regularisation - simplified problem

argmin
κ

1
2 ‖ γ − TPF κ ‖22 + λ ‖ Φ∗κ ‖1

Data fidelity

Sparsity prior
Wavelet based
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illustration - noiseless recovery

Input map 10 × 10 arcmin Source distribution

30 gal/arcmin2 93% of missing data
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illustration - noiseless recovery

Input map 10 × 10 arcmin Without regularisation

30 gal/arcmin2 93% of missing data
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illustration - noiseless recovery

Input map 10 × 10 arcmin Binning + Gaussian Smoothing

30 gal/arcmin2 93% of missing data
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illustration - noiseless recovery

Input map 10 × 10 arcmin Sparse regularisation

30 gal/arcmin2 93% of missing data
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sparse regularisation - full 2d problem

Lanusse, Starck, Leonard, Pires (2016)

argmin
κ,F̃

1
2
‖ C−1

κ [(1− ZTF∗κ)g− ZTPF∗κ] ‖22

+
1
2
‖ C−1

κ

[
(1− ZTF∗κ)F − ZTF∗F̃

]
‖22

+ λ ‖ w ◦Φtκ ‖1 +iIm(R)

([
κ

F̃

])

• Includes reduced shear, reduced flexion, individual redshifts

• Optimally combines shear and flexion

• Tuning of the sparsity constraint based on local noise levels

• Solved using a primal-dual proximal algorithm adapted from
(Vu, 2013) 14



extension to the 3d problem



sparse regularisation of the full inverse problem

Leonard, Lanusse, Starck (2015)
Leonard, Lanusse, Starck (2014)

Leonard, Dupe, Starck (2012)

δ̂ = argmin
δ

1
2
‖ γ − T P F Q δ ‖22 + λ ‖ Φ∗δ ‖1

Badly conditioned

16



sparse regularisation of the full inverse problem

Leonard, Lanusse, Starck (2015)
Leonard, Lanusse, Starck (2014)

Leonard, Dupe, Starck (2012)

δ̂ = argmin
δ

1
2
‖ γ − T P F Q δ ‖22 + λ ‖ Φ∗δ ‖1

Badly conditioned

Typically solved using FISTA (Fast Iterative Soft Thresholding)

16



sparse regularisation of the full inverse problem

Leonard, Lanusse, Starck (2015)
Leonard, Lanusse, Starck (2014)

Leonard, Dupe, Starck (2012)

δ̂ = argmin
δ

1
2
‖ γ − T P F Q δ ‖22 + λ ‖ Φ∗δ ‖1

Badly conditioned

Typically solved using FISTA (Fast Iterative Soft Thresholding)

16



preconditioning of the problem

Lanusse, Starck (2016), in prep.

We use the SVD of Q to build a preconditioning matrix N:

Q = USV∗ N = V S−1 V∗

and we solve the problem:

δ = N argmin
δ′

1
2
‖ γ − P Q′ δ′ ‖22 +λ ‖ Φ∗Nδ′ ‖1

• Convergence rate improved by orders of magnitudes

• Sparsity constraint more complex to compute
• Fast Spectral Projected Gradient algorithm
• GP-GPU parallel implementation
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illustration on a cluster from the mice n-body simulations

1015h−1M� cluster at z=0.37

Reconstruction using transverse Wiener filter from Simon et al.
(2011)

18



illustration on a cluster from the mice n-body simulations

1015h−1M� cluster at z=0.37

Reconstruction using GLIMPSE 18



preliminary results on cosmos



reconstruction from massey et al. (2007)
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reconstructed 3d density contrast

Lanusse, Starck (2016), in prep.
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zoom in on a cluster at redshift 0.12
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conclusion

• Incorporates developments introduced in Lanusse et al.
(2016):

• Handles irregularly distributed galaxies (no binning)
• Include individual redshift pdfs
• Accounts for reduced shear

• Tractable optimisation thanks to new algorithm

• Promising preliminary results on real data.

• Open-source software. The 2D version already available at:

https://github.com/CosmoStat/Glimpse
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