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Statistical Challenges in Modern
Astronomy

@ Chris Genovese: “not just the amount/size but also
the complexity and richness of the data are
increasing”

@ Due to both the physical processes and the
measurement techniques that generated the data
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Ex 1: Redshift Prediction

Elliptical Peculiar

More distant objects are seen further back in time ---
but, we cannot measure distances directly....
Redshift = proxy for distance




Redshift Prediction: Spectroscopy vs Photometry
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@ Left: High-resolution galaxy spectra

@ Spectroscopy resource intensive = More than 99 percent of

today's galaxy observations are instead from photometry.




Redshift Prediction: Spectroscopy vs Photometry
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@ Left: High-resolution galaxy spectra

@ Spectroscopy resource intensive = More than 99 percent of

today's galaxy observations are instead from photometry.

@ Right: Photometry (broad-band filters)
Challenge -- Accurately estimate z using photometric data X.




redshift (predictor) photometric covariates

Beyond Regression E(z|x) to Estimating f(z|x)

@ Because of degeneracies and observational limitations =>

Need the full distribution f(z|x) of the response z given x
to quantify uncertainty in the predictions

Conditional density: f(z

Fig. Examples of photometric

(z|x)
density estimates f(z|x) for
SDSS galaxies. Complicated

asymmetric and multimodal

distributions, not easily
summarized by means E(z|x)
and variances V(z|x).

f(z |)f eight galaxies of Sloan Digital Sky Survey (SDSS).

[Izbicki and Lee, 2015]




Ex 2: Evolution of Galaxy Morphology

“Disk”
“Bulge” | .

Traditional picture: .
The Canonical Hubble . = >
Sequence v " >

+other”

The key towards answering these questions may lie in the data we already have. Not surprisingly, the
existing coarse structural classifications fail to capture the complex assembly processes responsible for
the morphological transformation of galaxies over the past 10 billion years. We need more precise
quantitative tools to track galaxy structure and its evolution through time. The classifications of “bulge”,
“disk”, and “other” are not sufficient, and essentially throw away vast amounts of information. And we
are on the brink of even more big data. SDSS III 1s being followed by the deeper Pan-STARRS, Dark
Energy Survey, and SDSS IV, with LSST on the horizon. HST will be followed by the infrared sensitive
JWST and wide-field WFIRST, pushing our knowledge of the high-redshift universe. ALMA will trace
detailed gas structures at resolutions and distances greater than HST’s reach. The time has come to invest

- quote from J. Lotz, Space Telescope Science Institute (2013)




Beyond Classification to Estimating f(x|z)

Emergent Spheroids Emergent Disks Hidden Mergers
L]

@ How does the full distribution P(image|z) of galaxy
morphologies evolve with time/redshift z? This is an
extremely challenging (conditional) density estimation
problem.

pdf
f(x)

84 X 84 pixels = 7056 variables




Ex 3: Learning the relationship between
physical and observable properties

With regard to our second statistical aim, suppose that x ~ F' represents the summary
statistics for a population of simulated galaxies, while y represents the stellar masses, star-
formation rates, etc., for those same galaxies. Given {(x1,y1),...,(X,,yn)} for a set of n
galaxies, we wish to learn the relationship between x and y; for example, we may want to
estimate the conditional density

flylx) = f(M,SFR,... |C,AG,My,M,I D),

for the whole population of simulated galaxies, where the symbol | indicates that the quan-
tities to the right are fixed.

1.0 -05 00 5
median F(G,My) .-

From: Peter Freeman




General Statistical Setting

D = {(X:l)Zl))"°)(Xn)Zn)an+17'°°7XTL+m}7
where X, = (X’il7 4 ,Xf,;d) o Rd, Z; € R

Prediction: E[Z|x], f(z|x)
Density estimation: f(x), f(x)/g(x), f(x|z;0)




General Statistical Setting

D = {(X1721)7"'7(Xnazn)7X’n—|—17'°'7Xn+m}7
where X, = (Xz'la 4 ,Xf,;d) o Rd, Z; € R

Prediction: E[Z|x], f(z|x)
Density estimation: f(x), f(x)/g(x), f(x|z;0)




Key: Exploit Sparse Structure in
Astronomical Data

Assume data X; ~ Px

@ The ambient dimension may be large but most of the
sample space is empty.

"Sparsity” = Px places most of its mass on a subset of
the state space with small Lebesgue measure




~ e~ P

Each picture X=(xi....,xn) pixel values. High-dimensional data!
Low-dimensional structure due to certain constrained deformations
of the face.

adapts to the intrinsic data geometry?

LN




The Spectral Series Method

@ Spectral Kernel Methods + Orthogonal Series




"Classical” Orthogonal Series Estimation (1D)

Unknown density f(x) Fourier basis {o;(x)}

If f € L2(0,1), then f(z) = >22, B;¢;(x)

where [ ¢;(x)¢;(z)dz = 8; ;, and B; = [ ¢;(2) f(z)dx = E[p;(X)).

Density estimate

Currently not known how fo extend to higher than 2-3 dims.




We Propose “Spectral Basis”

_d2 (x,y) )

4de
images, spectra, light curves)

P YEGy)
MY = Tuley)dPG)

e Gaussian kernel w(xzy) = exp (

data objects (e.g. en’ri;\
e Normalize:

(o) = [ kx3)/(7)dP(y)
e (Consider the eigenfunctions of K

K(;)(x) = Aj;(x)

Cweep

"Spectral Basis”




Original dumbell Embedding




@ Spectral Basis: If a distribution has a few well-defined
clusters, then the first few eigenfunctions behave like indicator
functions for these clusters. The rest of the eigenfunctions
provide smooth Fourier-like basis functions within each cluster.
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Spectral Basis -- Orthogonal Basis Adapted
to the Intrinsic Data Geomeftry

Contour plots of the
top eigenfunctions
for data on a spiral.
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Spectral Basis -- Orthogonal Basis Adapted
to the Intrinsic Data Geomeftry

Contour plots of the
top eigenfunctions
for data on a spiral.

S5 ¥i(@);(x)dPx (x) = 0; 5

J
g(x) smooth = g(x) ~ Zﬁjwj(x)
j=1

No need of tensor products




Next

@ Two examples of high-dimensional inference
beyond regression/classification:

1. Photo-z estimation:

2. Approximate likelihood computation:
X X




I. Photo-z Estimation

D — {(Xl, Zl)7 M (Xn, Zn),Xn—l—la .« . 7Xn—|—m}7

@ z = "true” redshift (spectroscopically confirmed)

@ X = photometric covariates

® Goal: Estimate f(z|x) instead of just r(x)=E[Z|x].

Conditional density: f(z|x)

i
RERE

f(z|x) for eight galaxies of Sloan Digital Sky Survey (SDSS).

Photometry Estimates of f(z|x) from photometry

SDSS Filters and Reference Spectr

smission

normalized flux / filter tran:




CDE via Spectral Series

spectral basis

f(Z‘X) o Zi,j 57;7]'\117;7]'(2,X), where Q

Orthogonality: (¢, d¢) = Ok¢ and (Vg, V) px = O.s-

Hence, = [[ f(z|x)V; (2, z)dP(x)dz




CDE via Spectral Series

spectral basis

f(Z‘X) o Zi,j Bi,j\Iji,j<Z7X)a where Q

Orthogonality: (¢, d¢) = Ok¢ and (Vg, V) px = O.s-
Hence, = [[ f(z|x)V; (2, z)dP(x)dz

@ Spectral Series conditional density estimator

1 J
f(z]x) >N BT (2, x

i=1 j=1

3 &
Bi.s - > R X
E=4&




Fast Tuning of Parameters

@ To tune parameters, minimize estimated loss on a
validation set {(X1',Z1),..(Xn’,Zn’)}.

Loss function:




Estimating f(z|x):
Performance of Different Estimators

Set 1 [Sheldon et al., 2012]: Set 2 [T. Dahlen 2013]:
10,000 galaxies from multiple 752 galaxies from COSMOS with
surveys with d=10 covariates. d=37 covariates
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@ Spectral Series have a significantly smaller loss than a
nonparametric kernel smoother and Nearest Neighbors.




“Proof of Concept”: Redshift Prediction
Using High-Resolution Spectra

Redshift

Trad non-parametric Spectral basis for visualization
regression (and KNN) “diffusion map”
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Spectral Series
Regression

Estimated loss
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I1. Approximate Likelihood Computation

@ For some complex systems, the only real “theory”
available may be in the form of a simulation model

Fig: Galaxy images generated by GalSim (blurring, pixelation, noise)

: 0: shear
K X: entire image (low-res)




I1. Approximate Likelihood Computation

@ For some complex systems, the only real “theory”
available may be in the form of a simulation model

Fig: Galaxy images generated by GalSim (blurring, pixelation, noise)

(low-res)

Given a simulated sample (x1,01),..., (Xn,0n), can estimate the
likelihood function L(0) « f(x|0) nonparametrically via Spectral
Series.




Approximate Likelihood Computation (contd)

@ Shear: rotation angle «, axis ratio p

® Contours of the estimated likelihood for different methods:

The spectral
series estimator
(bottom left)
comes close to
the true
distribution

(top)

130




Key Points of Talk

@ To take advantage of the richness of modern data and
simulation models, need to work with high-dimensional
data objects x and probability distributions.

@ Propose a new Fourier-based approach ("Spectral
Series”) that

@ exploits the intrinisic geometry of the data, and

@ that can be used to estimate general functions on complex
objects x; e.g. conditional densities f(z|x) in a regression
setting, and likelihood functions f(xl6),




Work in Progress/Open Problems:
Calibrating Complex Models

1. Small mass fluctuations (such
as those revealed by the all-sky

l he Or S/ In map, shown at left, obtained by

the COBE satellite) are relics of

) . the Big Bang. These are the
(Simulation)

"seeds" of galaxy formation

2. Invisible dark matter halos (shown in brown
below) collapse from the ambient background, 3. Primordial gas condenses within the
tracing the initial mass fluctuations. dark matter halos. Some stars form during
the collapse, and collect into globular
clusters. Most of the gas collects into
disks (shown in yellow).

ParkoMattor Halo

; —. Disk

4. Stars form in the disk, gradually
building up a spiral galaxy.

Colliding spiral galaxies

g’nlse@blgoi - N Compare distributions in
alaxies u . . .
\ / 5. A collision of two (or more) disks h | g h d I m e ns l O ns

produces an elliptical galaxy.
The globular clusters from the
. disks are preserved in the
C v transformation.

HOW’ ExaCtly ? 5 .0‘ .E/Iiptr'calgalaxy
o Estimate paramefters in

Observed Data the model

Abraham & van den Bergh (2001)
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EXTRA SLIDES START
HERE




In Practice: Need to Estimate the Basis
X1,. oKX AT RRIDlC

1. Construct Gram matrix (or row-normalized matrix)

_(Z(Xl,Xl) CL(Xl,XQ) CL(Xl,X )_
CL(XQ, Xl) a(XQ, XQ) RIS &(XQ, Xn)

ba( X, X1) el e Xo ke al X, , Xi,)

2. Compute eigenvectors (j=1,2,...)

3. For x € A, “Nystrom extension”
1

o &ZC,Xk
3 (2, Xk)




Recall: PCA is a linear data compression. Does
not capture (nonlinear) geometries.

oo 05 1.0
First principal compenent

Elements of Statistical Learning,
Hastie, Tibshirani, and Friedman, pg. 488




Why Spectral Basis and Not Just PCA?

@ In PCA, eigenfunctions are linear.

@ For the "diffusion kernel”, the eigenfunctions form a
Fourier-like basis for estimating functions that are
smooth relative Px.

PCA basis Spectral Basis




Dual Interpretation of Eigenfunctions

1. Coordinates of complex data objects
IYEE (A1¢1($), )\21@2(33), i )

@ Useful for organizing and clustering data objects

@ Dimension reduction (if only p<d coordinates retained)

° la
o |In+lIP+IIL
e |b+lc+lb/c

Diffusion Coordinate 2
Diffusion Coordinate 7

Embedding of supernova
light curves using spectral
basis [Richards et al, 2011]

0 1 2

Diffusion Coordinate 1 Diffusion Coordinate 3




Dual Interpretation of Eigenfunctions

1. Coordinates of complex data objects
IYEE (A1¢1($), )\ng(ﬂf), i )

@ Useful for organizing and clustering data objects

@ Dimension reduction (if only p<d coordinates retained)
2.0rthogonal basis for functions on the data

@ Useful for
(regression/classification/density estimation):

If f e L?(X,P), then f(z) = Dius B5ab;(x)
where (¢;, ;) p :/%and AW ) b

e.g. redshift e\.g. galaxy spectra




Original dumbell Embedding




Ex: Estimating Pose of Images of Faces
ur I
1 L B
= R¢

Isomap Face Database
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Estimated loss

Spectral basis for visualization

Spectral Series Regression
Manifold-based regression (30 mins) (seconds)




Scalability: Preliminary Results

— Randomized SVD='SVD — Randomized SVD--SVD
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Benefits of using the randomized SVD (Halko et al,
2011). Parallelizable algorithm.




