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Chris Genovese: “not just the amount/size but also 
the complexity and richness of the data are 
increasing”

Due to both the physical processes and the 
measurement techniques that generated the data

Statistical Challenges in Modern 
Astronomy



Claim
To fully take the richness and complexity of the 
data into account, we need to

1. use nonparametric models 

2. work with high-dimensional data objects x (e.g. 
entire spectra, images, light curves, etc) 

3. move beyond regression/classification to estimating 
probability distributions of complex, high-dimensional 
objects x
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Ex 1: Redshift Prediction

More distant objects are seen further back in time --- 
but, we cannot measure distances directly....

Redshift = proxy for distance

of galaxies beyond those included within the
tuning fork paradigm.

Although these early HST studies sug-
gested that extending the low-redshift tuning
fork paradigm to high redshifts would prove
difficult, the ultimate futility of this task only
became apparent when the HDF images were
released (Fig. 2). At the limit to which mor-
phological classification is reliable in the
deep fields (variously quoted as between I !
25 mag and I ! 26 mag), around 30% of the
galaxies are classified as “strongly peculiar or
merging”—that is, about 30% of the galaxies
fall outside the conventional framework
(20, 22, 23). Most studies find little evi-
dence for evolution in the space density of
elliptical galaxies [with the exception of
(24 )]. But, as is the case with spiral galax-
ies, the internal characteristics of elliptical
galaxies do show trends with redshift. The
most prominent of these is an increasing
proportion of elliptical galaxies with blue
cores in the distant Universe (25), which
indicates the presence of some hot young
blue stars in these old galaxies.

Imaging studies allow trends to be estab-
lished as a function of galaxy brightness, but
more physically based investigations of galaxy
morphology require that the redshifts of the
galaxies be known. This is a formidable chal-
lenge; galaxies can be detected on charge-cou-
pled device images down to much fainter levels
than can be probed spectroscopically, because
in the latter case light is being dispersed, so
Poisson noise is larger relative to the signal of
interest. One rather successful technique for
dealing with this difficulty has been to estimate
redshifts from galaxy colors (26). Morpholog-
ical investigations using these “photometric
redshifts” (24, 27) have confirmed and solidi-
fied the statistical conclusions from earlier im-
aging studies of galaxies that had no photomet-
ric redshift information; this made it possible to
draw galaxy samples from redshift ranges im-
mune to the effects of morphological K-correc-
tions. But because photometric redshift tech-
niques rely, at a basic level, on assumptions
regarding the possible spectra of galaxies and
on the nature of systematics that may alter such
spectra (such as the form of the dust extinction
curve), they are only fairly crude estimators
("z # 0.1 for blue galaxies, "z # 0.04 for red
galaxies) of the true redshifts of distant galaxies
(26). Morphological investigations of large
samples of objects of known redshift became
feasible when Brinchmann et al. (28) obtained
HST images for 341 galaxies of known redshift
from the Canada-France Redshift Survey. Re-
sults from this investigation agree with earlier
results (17, 20, 29). Around 30% of galaxies at
z ! 1 are morphologically peculiar, and these
authors found that the fraction of galaxies with
irregular morphology increases with redshift
beyond the range that is expected on the basis
of the systematic misclassifications of spiral

Fig. 2. Montage of typical elliptical, spiral, and peculiar galaxies in the Northern and Southern
HDFs, imaged by the HST. The images are sorted by redshift (local galaxies at bottom, distant
galaxies at top). Color images were constructed by stacking images obtained through blue,
yellow, and near-IR filters. Note the gradual loss in the organization (and the increase in the
fragmentation) of spiral arms in the spirals. Barred spirals (such as the example shown in the
bottom row) become rare beyond z ! 0.5. The physical nature of most of the peculiar galaxies
in the far right column is poorly understood. The exception is the object at the lower right
corner, which is a dwarf irregular, a class of objects common in the local Universe. In Fig. 3, we
speculate on the possible nature of two other galaxies in the far right column.
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Redshift Prediction: Spectroscopy vs Photometry

Left: High-resolution galaxy spectra 

Spectroscopy resource intensive ⇒ More than 99 percent of 
today’s galaxy observations are instead from photometry.

Right: Photometry (broad-band filters).                    
Challenge -- Accurately estimate z using photometric data x.
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Because of degeneracies and observational limitations => 
Need the full distribution f(z|x) of the response z given x 
to quantify uncertainty in the predictions

Conditional density: f (z |x)
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f (z |x) for eight galaxies of Sloan Digital Sky Survey (SDSS).
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Beyond Regression E(z|x) to Estimating f(z|x)
photometric covariates redshift (predictor)

Fig. Examples of photometric 
density estimates f(z|x) for 
SDSS galaxies. Complicated 
asymmetric and multimodal  
distributions, not easily 
summarized by means E(z|x) 
and variances V(z|x).

[Izbicki and Lee, 2015]



- quote from J. Lotz, Space Telescope Science Institute (2013)

 “ If we would hope to make any progress in an investigation of this delicate a nature [on the 
 Construction of the Heavens], we ought to avoid two opposite extremes, of which I can hardly say 
 which is most dangerous.  If we indulge in a fanciful imagination and build worlds of our own, we 
 must not wonder at our going wide from the path of truth and nature. One the other hand, if we 
 add observation to observation, without attempting to draw not only certain conclusions, but also 
 conjectural views from them, we offend against the very end for which [the] observations ought to 
 be made.”   -- William Herschel (1785), 
        quoted by Sandage & Bedke (1994; The Carnegie Atlas of Galaxies)

MOTIVATION AND GOALS 
The assembly of galaxies and their dark matter halos through mergers and accretion is a cornerstone of 
our current theoretical model of galaxy evolution in a !CDM universe.  Galaxy morphologies trace their 
orbital structures, weighted by the star-formation histories of those structures. Therefore, galaxy 
morphologies provide direct insight into their assembly and internal secular processes.  The overarching 
goal of the proposed work is to track the physical metamorphosis of massive galaxies through time 
by identifying the morphological signatures of different modes of galaxy assembly.  

Over the past decade, we have answered many of the `what' and `when’ questions of galaxy evolution,  
but not the `why' . With the Sloan Digital Sky Survey,  and large HST surveys such as COSMOS, 
GOODS, and CANDELS, we now have a broad-brush picture for how the structures of galaxies have 
evolved over the past 10 billion years. The vast majority of structural studies rely on a very small number 
of measurements (e.g. visual classifications, Sersic index,  Concentration-Asymmetry,  Gini-M20) that are 
than often binned into “disk-dominated”,  “bulge-dominated”, and (sometimes) “irregular” classifications. 
These simplified characterizations are generally well-correlated with the integrated colors, recent star-
formation histories, and stellar masses of galaxies at times as early at z~1-2 (e.g. Hogg et al. 2004;  Bell et  
al. 2005;  Lotz et al. 2008; Conselice et al. 2003; Wuyts et al. 2011;  van Dokkum et al. 2013).   

Yet there remain many unanswered questions about the physical processes connecting observed galaxy 
structures to galaxy assembly and evolution. These largely involve understanding how the different 
modes of galaxy assembly (major mergers, minor mergers, and gas accretion) occur and how a galaxy’s 
star-formation history and structure evolves as a result.  The questions we will address here include: 

• What processes grow galaxies in mass and size? 

• What is the relative importance of smooth gas-accretion v. mergers in galaxy assembly and 
          star-formation over cosmic time?

• What is the role of internal secular processes (bar-formation,  disk settling) in the structural 
evolution and star-formation histories of galaxies?  

• What are the pathways for early-type galaxy formation and quenching?  Are these internally and/or 
externally driven  (e.g. AGN feedback v. mergers/environment) ? 

The key towards answering these questions may lie in the data we already have. Not surprisingly,  the 
existing coarse structural classifications fail to capture the complex assembly processes responsible for 
the morphological transformation of galaxies over the past 10 billion years. We need more precise 
quantitative tools to track galaxy structure and its evolution through time. The classifications of “bulge”, 
“disk”, and “other” are not sufficient,  and essentially throw away vast amounts of information.  And we 
are on the brink of even more big data.  SDSS III is being followed by the deeper Pan-STARRS,  Dark 
Energy Survey, and SDSS IV,  with LSST on the horizon.  HST will be followed by the infrared sensitive 
JWST and wide-field WFIRST, pushing our knowledge of the high-redshift universe. ALMA will trace 
detailed gas structures at resolutions and distances greater than HST’s reach. The time has come to invest 

Ex 2: Evolution of Galaxy Morphology

Traditional picture:
The Canonical Hubble 

Sequence

“Bulge”

+``other’’

“Disk”



Beyond Classification to Estimating f(x|z) 
CANDELS Multi-Cycle Treasury Program 3
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Figure 1. Four-orbit images of HUDF galaxies from ACS vs. 2-orbit images from WFC3/IR illustrate the importance of WFC3/IR
for studying distant galaxy structure. WFC3/IR unveils the true stellar mass distributions of these galaxies unbiased by young stars and
obscuring dust. The new structures that emerge in many cases inspire revised interpretations of these objects, as indicated.

SN portions of both proposals were consolidated under
a separate program by Riess et al. (GO 12099), and the
SN Ia follow-up orbits from both programs were pooled.
Our program takes prime responsibility for the highest-
redshift SNe (z > 1.3), while CLASH addresses SNe at
lower redshifts.
The resulting observing program, now entitled the Cos-

mic Assembly Near-infrared Extragalactic Legacy Sur-
vey (CANDELS), targets five distinct fields (GOODS-N,
GOODS-S, EGS, UDS, and COSMOS) at two distinct
depths. Henceforth, we will refer to the deep portion of
the survey as “CANDELS/Deep” and the shallow por-
tion as “CANDELS/Wide.” Adding in the Hubble Ul-
tra Deep Fields (HUDF) makes a three-tiered “wedding
cake” approach, which has proven to be very e⇥ective
with extragalactic surveys. CANDELS/Wide has expo-
sures in all five CANDELS fields, while CANDELS/Deep
is only in GOODS-S and GOODS-N.
The outline of this paper is as follows. We first provide

a brief synopsis of the survey in §2. We follow in §3 with
a detailed description of the major science goals along
with their corresponding observational requirements that
CANDELS addresses. We synthesize the combined ob-
serving requirements in §4 with regard to facets of our
survey. A description of the particular survey fields and
an overview of existing ancillary data are provided in §5.
Section 6 describes the detailed observing plan, including
the schedule of observations. Section 7 summarizes the
paper, along with a brief description of the CANDELS
data reduction and data products; a much more complete
description is given by Koekemoer et al. (2011), which is
intended to be read as a companion paper to this one.
Where needed, we adopt the following cosmological

parameters: H0 = 70 km s�1 Mpc�1; �tot,��,�m =
1, 0.3, 0.7 (respectively), though numbers used in indi-
vidual calculations may di⇥er slightly from these values.
All magnitudes are expressed in the AB system (Oke &
Gunn 1983).

2. CANDELS SYNOPSIS

Table 1 provides a convenient summary of the sur-
vey, listing the various filters and corresponding total
exposure within each field, along with each field’s co-
ordinates and dimensions. The Hubble data are of sev-
eral di⇥erent types, including images fromWFC3/IR and
WFC3/UVIS (both UV and optical) plus extensive ACS
parallel exposures. Extra grism and direct images will
also be included for SN Ia follow-up observations (see
§3.5), but their exposure lengths and locations are not

pre-planned. They are not included in Table 1. In pe-
rusing the table, it may be useful to look ahead at Fig-
ures 12–16, which illustrate the layout of exposures on
the sky.

How does the full distribution P(image|z) of galaxy 
morphologies evolve with time/redshift z? This is an 
extremely challenging (conditional) density estimation 
problem.

x =

84 X 84 pixels = 7056 variablesx

pdf
f(x)



Ex 3: Learning the relationship between 
physical and observable properties

ADA Project: Learning the Relationship 
Between Physical and Observed Parameters

Problem Statement
Suppose we have two sets of data of size m and n sampled from distributions F and G:

{xF
1 , xF

2 , · · · , xF
m} ≥ F and {xG

1 , xG
2 , · · · , xG

n } ≥ G .

xF
i could be a set of summary statistics for the ith galaxy of a catalog constructed from,

e.g., a simulated H-band catalog, while xG
j could be those same statistics extracted from

jth galaxy image in an HST WFC3 H-band catalog. The number of statistics, and thus the
dimensionality of our sample space, is d π p, and the density functions associated with the
distributions F and G are f(x) and g(x), respectively.

With regard to our first statistical aim, we wish to identify regions in the sample space
where the distributions F and G are significantly di�erent and to use this information,
e.g., to infer redshift evolution (given two observed samples) or to inform improvements in
simulation codes (by comparing simulation output at one wavelength to HST data at that
same wavelength), etc.

With regard to our second statistical aim, suppose that x ≥ F represents the summary
statistics for a population of simulated galaxies, while y represents the stellar masses, star-
formation rates, etc., for those same galaxies. Given {(x1, y1), . . . , (xn, yn)} for a set of n
galaxies, we wish to learn the relationship between x and y; for example, we may want to
estimate the conditional density

f(y|x) = f(Mı,SFR, . . . | C,A,G,M20,M,I,D) ,

for the whole population of simulated galaxies, where the symbol | indicates that the quan-
tities to the right are fixed.Observing Galaxy Assembly in Simulations

!
!
!
!
!
!
!

Proposed Research"  of "5 5Gregory F. Snyder
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Hδ absorption [O II] emission D4000

Figure 4: Maps derived using radiative transfer 
from a hydro simulation. This shows how stars 
and star formation are distributed after a major 
merger. Spatially resolved spectra, including 
ionization, doppler shifting, and dust, can now 
be created from suites of cosmological 
simulations and studied alongside IFU surveys 
to constrain dynamical histories of galaxies.

first passage final merger

Figure 3: Mock image analysis of a merger in a high-resolution simulation (Snyder et al. 2014). 
Diagnostics have varying sensitivity: multiple nuclei indicated by G-M20 for a long period 
during first passage; lopsidedness (D statistic) more strongly peaked at 4.5 Gyr. Bottom panel 
shows rate of change in mass via star formation, gas flows, and mergers (“ex-situ stars”). These 
quantities are elevated during first passage and final merger. The goal is to use synthetic data to 
translate between this physical mass assembly and measurements from surveys (upper panels). 
Both large volumes and high space and time resolution are essential to accumulate robust 
statistics on these rare, subtle, and heterogeneous signposts of galaxy formation.  

Merger 
seen from 
3 angles!!
Images as 
in HST- 
CANDELS

Figure 2. A merger observed in a high-resolution simulation (Snyder et al. 2014). Multiple nuclei are
indicated by heightened values of G and M20 over a long period during first passage, while lopsidedness
is indicated by D, which strongly peaks at 4.5 Gyr. The bottommost panel shows rate of change in
mass via star formation, gas flows, and mergers (“ex-situ stars”), quantities that are elevated during
the first passage and final merger. One goal of our work would be to learn the relationship between
physical mass assembly and observed summary statistics like G, M20, and D.
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Figure 4. SFR versus mass (panel a, top left), overdensity versus mass (panel b, bottom left), and SFR/M⇤ versus compactness (panel
c, top right), with colours proportional to galaxy structure (Equation 6). In each bin, we measure the median F (G,M20) value from
rest-frame g-band images and assign it a colour following panel d. Bulge-dominated galaxies are colour-coded red and disc-dominated
ones are blue. The gray (black) contour outlines a region in which each bin contains 10 or more (central) galaxies. The green solid line
in panel (a) is the star-forming main sequence parameterized by Whitaker et al. (2012). Compared to surveys, Illustris recovers roughly
the same average structural type as a function of M⇤ and SFR (e.g., Kau↵mann et al. 2003; Wuyts et al. 2011), as a function of � and
M⇤ (Peng et al. 2010), and as a function of SFR/M⇤ and M⇤R

�1.5
1/2 (e.g., Franx et al. 2008; Barro et al. 2013; Omand et al. 2014). These

trends appear to be a natural consequence of galaxy formation processes simulated with physics models crafted to match global star
formation histories and stellar mass functions.

and disc-dominated galaxies. While here we are using a
di↵erent morphology diagnostic, the transition from disk-
dominated to bulge-dominated occurs at a location very
similar to the one found by Wuyts et al. (2011): at SFR
⇠ 0.1 M�yr

�1 for M⇤ ⇠ 1010M� and SFR ⇠ 1 M�yr
�1 for

M⇤ ⇠ 1011M�. Compared to observations, Illustris appears
to have too few low-SFR, bulge-dominated central galaxies
at M⇤ ⇠ 1010.5M� in panel (a).

Panel (b) of Figure 4 presents morphology as a func-
tion of overdensity and M⇤. We use the same definition of
3-dimensional overdensity � as Vogelsberger et al. (2014b),
who showed that star formation is correlated inversely with
density at fixed M⇤, matching observed trends (e.g., Peng
et al. 2010). Since F (G,M20) is correlated tightly with
SFR (panel a), we recover a similar dependence of galaxy

morphology on mass and environment. Thus, Illustris re-
produces basic features of “mass quenching”, “environment
quenching”, and the morphology-density relation.

In panel (c) of Figure 4, we plot SFR/M⇤ versus
M⇤R

�1.5
1/2 , a measure of compactness (e.g., ⌃1.5 from Barro

et al. 2013). This quantity is closely related to a surface mass
density, which has been shown to correlate with SFR/M⇤
out to high redshifts (e.g., Franx et al. 2008; Omand et al.
2014). As also seen in individual galaxy tracks by Genel et al.
(2014), we see that compactness correlates with SFR/M⇤ in
Illustris central galaxies: the black solid contour in panel (c)
encircles bins containing more than 10 central galaxies, indi-
cating a tight relationship between M⇤R

�1.5
1/2 and SFR/M⇤.

Here, we find that both quantities also correlate tightly with
bulge strength, as indicated by the change from blue to

c� 0000 RAS, MNRAS 000, 000–000
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General Statistical Setting

Prediction: E[Z|x], f(z|x)
Density estimation: f(x), f(x)/g(x), f(x|z;�)

D = {(X1, Z1), . . . , (Xn, Zn), Xn+1, . . . , Xn+m},
where Xi = (Xi1, . . . , Xid) 2 Rd, Zi 2 R

x=

SN 139

0

5

10

-20 0 20 40 60 80

g

0

5

10

-20 0 20 40 60 80

r

0

5

10

15

-20 0 20 40 60 80

i

0

10

20

-20 0 20 40 60 80

z

Tobs − 56242

Fl
ux



General Statistical Setting

Prediction: E[Z|x], f(z|x)
Density estimation: f(x), f(x)/g(x), f(x|z;�)

D = {(X1, Z1), . . . , (Xn, Zn), Xn+1, . . . , Xn+m},
where Xi = (Xi1, . . . , Xid) 2 Rd, Zi 2 R

x=

SN 139

0

5

10

-20 0 20 40 60 80

g

0

5

10

-20 0 20 40 60 80

r

0

5

10

15

-20 0 20 40 60 80

i

0

10

20

-20 0 20 40 60 80

z

Tobs − 56242

Fl
ux

How do we estimate such functions in high dimensions?



Key: Exploit Sparse Structure in 
Astronomical Data

x=

The ambient dimension may be large but most of the 
sample space is empty.

Assume data Xi ⇠ PX

“Sparsity” = PX  places most of its mass on a subset of 
the state space with small Lebesgue measure 



Manifolds

Statistical Machine Learning at CMU – p.10/33

17

Each picture X=(x1,...,xn) pixel values. High-dimensional data!
Low-dimensional structure due to certain constrained deformations
of the face.

Ex: Low-Dimensional Structure in Images of Faces

Q: How to construct nonparametric methods that 
adapts to the intrinsic data geometry?



The Spectral Series Method

Spectral Kernel Methods + Orthogonal Series



“Classical” Orthogonal Series Estimation (1D)

Density estimate

Unknown density f(x) Fourier basis {�j(x)}

b
f(x) =

JX

j=1

b
�j�j(x)

b
�j =

1

n

nX

i=1

�j(xi)

If f 2 L2(0, 1), then f(x) =
P1

j=1 �j�j(x)

where
R 1
0 �i(x)�j(x)dx = �i,j , and �j =

R 1
0 �j(x)f(x)dx = E[�j(X)].

Currently not known how to extend to higher than 2-3 dims.



• Gaussian kernel w(x,y) = exp

⇣
�d2(x,y)

4✏

⌘

• Normalize:

k(x,y) =
w(x,y)R

w(x,y)dP (y)

,

K(f)(x) =

Z
k(x,y)f(y)dP (y)

• Consider the eigenfunctions of K

K( j)(x) = �j j(x)

{ j(x)}j2N

We Propose ``Spectral Basis’’

“Spectral Basis”

data objects (e.g. entire images, spectra, light curves)



Example: Hour-glass surface

Courtesy of S. Lafon
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Spectral Basis: If a distribution has a few well-defined 
clusters, then the first few eigenfunctions behave like indicator 
functions for these clusters. The rest of the eigenfunctions 
provide smooth Fourier-like basis functions within each cluster.



Orthogonality:
R
X  i(x) j(x)dPX(x) = �i,j

Spectral Basis -- Orthogonal Basis Adapted 
to the Intrinsic Data Geometry

Why are Spectral Bases Appropriate?
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Level sets of first elements when data lives on a spiral
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Contour plots of the 
top eigenfunctions 
for data on a spiral.



Orthogonality:
R
X  i(x) j(x)dPX(x) = �i,j

Spectral Basis -- Orthogonal Basis Adapted 
to the Intrinsic Data Geometry

Why are Spectral Bases Appropriate?
ψ1

x
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ψ2

x

y

ψ3

x

y

ψ4

x

y

Level sets of first elements when data lives on a spiral

17 / 35

Contour plots of the 
top eigenfunctions 
for data on a spiral.
Why are Spectral Bases Appropriate?

Adapt to geometry of data

g(x) smooth ⇥ g(x) �
J�

j=1

�j⇥j(x)

No need of tensor products

Orthogonality:

⇥
⇥i (x)⇥j(x)dP(x) = I(i = j)

18 / 35

high-dimensional object



Next

Two examples of high-dimensional inference 
beyond regression/classification:

1. Photo-z estimation: Estimating f(z|x) in a regression 
setting. 

2. Approximate likelihood computation:                  
Estimating f(x|�) using output (x = entire image) from 
a simulation model.



I. Photo-z Estimation

z = “true” redshift (spectroscopically confirmed)

x = photometric covariates 

Goal: Estimate f(z|x) instead of just r(x)=E[Z|x].
Conditional density: f (z |x)
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f (z |x) for eight galaxies of Sloan Digital Sky Survey (SDSS).

6 / 35Photometry Estimates of f(z|x) from photometry

D = {(X1, Z1), . . . , (Xn, Zn), Xn+1, . . . , Xn+m},



CDE via Spectral Series

f(z|x) =
P

i,j �i,j i,j(z,x), where  i,j(z,x) = �i(z) j(x).

Orthogonality: h�k,�`i = �k,` and h k, `iPX = �k,`.

Hence, �i,j =
RR

f(z|x) i,j(z, x)dP (x)dz= E[ i,j(Z,X)].

spectral basis 



CDE via Spectral Series

f(z|x) =
P

i,j �i,j i,j(z,x), where  i,j(z,x) = �i(z) j(x).

Orthogonality: h�k,�`i = �k,` and h k, `iPX = �k,`.

Hence, �i,j =
RR

f(z|x) i,j(z, x)dP (x)dz= E[ i,j(Z,X)].

bf(z|x) =
IX

i=1

JX

j=1

b�i,j b i,j(z,x),

b�i,j =
1

n

nX

k=1

b i,j(zk,xk), b i,j(zk,xk) = �i(zk) b j(xk),

Spectral Series conditional density estimator

spectral basis  



Fast Tuning of Parameters
To tune parameters, minimize estimated loss on a 
validation set {(X1’,Z1’),..(Xn’,Zn’)}.

Loss function:

L( bf, f) =
ZZ ⇣

bf(z|x)� f(z|x)
⌘2

dP (x)dz

Estimated loss (up to a constant):

bL( bf, f) =
IX

i=1

JX

j=1

JX

m=1

b�i,j
b�i,m

cWj,m � 2

1

n0

n0X

k=1

bf(z0k|x0
k) + C,

where

cWj,m = (n0
)

�1
n0X

k=1

b⇥j(x
0
k)

b⇥m(x

0
k).



Estimating f(z|x):                    
Performance of Different Estimators
Set 1 [Sheldon et al., 2012]: 

10,000 galaxies from multiple 
surveys with d=10 covariates.

Set 2 [T. Dahlen 2013]: 
752 galaxies from COSMOS with 

d=37 covariates 

Spectral Series have a significantly smaller loss than a 
nonparametric kernel smoother and Nearest Neighbors.



``Proof of Concept’’: Redshift Prediction 
Using High-Resolution Spectra
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II. Approximate Likelihood Computation

For some complex systems, the only real “theory” 
available may be in the form of a simulation model

Fig: Galaxy images generated by GalSim (blurring, pixelation, noise) 

θ: shear
x: entire image (low-res)



II. Approximate Likelihood Computation

For some complex systems, the only real “theory” 
available may be in the form of a simulation model

Fig: Galaxy images generated by GalSim (blurring, pixelation, noise) 

θ: shear
x: entire image (low-res)

Given a simulated sample (x1,θ1),..., (xn,θn), can estimate the 
likelihood function L(θ) ∝ f(x|θ) nonparametrically via Spectral 
Series. No prior dimension reduction and no MCMC.



Approximate Likelihood Computation (cont’d)
Shear: rotation angle �, axis ratio �

Contours of the estimated likelihood for different methods:

The spectral 
series estimator 

(bottom left)
comes close to 

the true 
distribution

(top)



Key Points of Talk
To take advantage of the richness of modern data and 
simulation models, need to work with high-dimensional 
data objects x and probability distributions.

Propose a new Fourier-based approach (“Spectral 
Series”) that 

exploits the intrinisic geometry of the data, and

that can be used to estimate general functions on complex 
objects x; e.g. conditional densities f(z|x) in a regression 
setting, and  likelihood functions f(x|�), 



Work in Progress/Open Problems:
Calibrating Complex Models

as a result of the morphology-density relation
(10), narrow-field observations such as those
undertaken with HST may be significantly
biased by galaxy environment. For example,
elliptical galaxies are expected to be over-
abundant in those parts of the line-of-sight
that pass through, or close to, clusters of
galaxies.

A final complication is introduced by the
fact that distant galaxies are seen at a range of
redshifts. Therefore, observations made in a
single filter probe each galaxy at a wave-
length different from that of the same filter in
the rest frame (i.e., the frame of reference in
which the galaxy is stationary with respect to
the expansion of the Universe). This poses a

problem for morphologists, because the ap-
pearance of a galaxy can vary strongly with
wavelength. In the ultraviolet (UV), a gal-
axy’s light comes mainly from hot young
stars, which are often distributed in clumpy
irregular knots of star formation. At optical
wavelengths, stars on the stellar main se-
quence dominate, and galaxies take on their
most familiar appearance. In the infrared
(IR), most of the flux is usually from evolved
old stars, which are quite uniformly distrib-
uted, so galaxies appear smoother than at
optical wavelengths. As a result, identical
galaxies appear different at different red-
shifts. The importance of this effect (known
as the “morphological K-correction”) de-
pends rather strongly on the distance at which
the galaxy is seen. For galaxies with redshifts
z ! 0.8 [i.e., for galaxies seen at look-back
times less than about halfway back to the Big
Bang (11)], observations made with HST us-
ing the F814W filter (commonly used for
morphological work) correspond to observa-
tions made at familiar optical wavelengths in
the galaxy’s frame of reference. Thus, the
effects of morphological K-corrections are
quite benign at z ! 0.8, and much work on
galaxy morphology has focused on this
“safe” redshift range. At redshifts z " 0.8,
galaxies viewed with the F814W filter are
being seen at UV wavelengths in the rest
frame. Unfortunately, rather little is known
about the appearance of nearby galaxies in
the UV, because our atmosphere is opaque to
UV radiation, and only rather small UV im-
aging surveys have been undertaken from
space. It is clear that some nearby galaxies
that appear optically normal appear strange in
the UV (12, 13). Consequently, galaxies at
z " 0.8 are best studied in the IR at wave-
lengths greater than 1 #m in order to under-
take fair comparisons with local studies made
at optical wavelengths (14). HST had only a
rather limited capability to undertake such
observations, using the short-lived Near In-
fra-Red Camera and Multi-Object Spectrom-
eter (NICMOS).

Morphological Classifications of
Distant Galaxies
The existence of a population of morphologi-
cally peculiar galaxies at high redshifts was
first suspected on the basis of HST observa-
tions as early as 1994 (15–19). Much of this
early work proceeded hand in hand with im-
proved attempts to quantify galaxy morphol-
ogy using automated morphological classifi-
cation schemes, as fast and robust replace-
ments for traditional visual classifications.
Present state-of-the-art automatic classifica-
tion systems can group galaxies into broad
categories (such as spirals, ellipticals, and
peculiars) as reliably as can a visual classifier
(7, 20, 21), and these systems are in principle
extensible to encompass wholly new classes

Fig. 1. Schematic illustration of the formation of galaxies in the hierarchical formation model. The
time scale for the various phases shown in the illustration depends on cosmological parameters
(i.e., the value of the Hubble constant, and the total mass-energy of the Universe contained in both
dark matter and dark energy). For example, in an accelerating Universe most elliptical galaxies form
at redshifts z " 1, while in a decelerating Universe most ellipticals form at z ! 1. It is worth noting
that morphological transformations are cyclical in this model. Some elliptical galaxies formed by
the collision of spirals will slowly accrete gas from the field, thus growing a new disk, and ultimately
being transformed back into spiral galaxies with prominent nuclear bulges.
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Theory In
(Simulation)

Ensemble of
Galaxies Out

Observed Data
Abraham & van den Bergh (2001)

How, Exactly?

Compare distributions in 
high dimensions

Estimate parameters in 
the model
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EXTRA SLIDES START 
HERE



In Practice: Need to Estimate the Basis
X1, . . . , Xn: i.i.d. sample

1. Construct Gram matrix (or row-normalized matrix)

2

6664

a(X1, X1) a(X1, X2) · · · a(X1, Xn)

a(X2, X1) a(X2, X2) · · · a(X2, Xn)

.

.

.

.

.

.

.

.

.

.

.

.

a(Xn, X1) a(Xn, X2) · · · a(Xn, Xn)

3

7775

2. Compute eigenvectors (j=1,2,...)

⇣
e
 j(X1), . . . ,

e
 j(Xn)

⌘

3. For x 2 X , “Nyström extension”

b
 j(x) =

1

b
�j

nX

k=1

a(x,Xk)
e
 j(Xk).



PCA Example

Elements of Statistical Learning,
Hastie, Tibshirani, and Friedman, pg. 488

ADA Presentation 04/25/08 – p.9

Recall: PCA is a linear data compression. Does 
not capture (nonlinear) geometries.



Why Spectral Basis and Not Just PCA?
In PCA, eigenfunctions are linear.

For the “diffusion kernel”, the eigenfunctions form a 
Fourier-like basis for estimating functions that are 
smooth relative PX.

X

x • v

PCA

X

� (x)

SCASpectral BasisPCA basis



Dual Interpretation of Eigenfunctions 
1. Coordinates of complex data objects

Useful for organizing and clustering data objects

Dimension reduction (if only p<d coordinates retained)

x 2 X 7! (�1 1(x),�2 2(x), . . .)

Embedding of supernova 
light curves using spectral 
basis [Richards et al, 2011]−3 −2 −1 0 1
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Dual Interpretation of Eigenfunctions 
1. Coordinates of complex data objects

Useful for organizing and clustering data objects

Dimension reduction (if only p<d coordinates retained)

2.Orthogonal basis for functions on the data

Useful for non-parametric curve estimation 
(regression/classification/density estimation): 

e.g. galaxy spectrae.g. redshift

x 2 X 7! (�1 1(x),�2 2(x), . . .)

If f 2 L

2(X , P ), then f(x) =
P1

j=1 �j j(x)
where h i, jiP = �i,j and �j = hf, jiP .



Example: Hour-glass surface

Courtesy of S. Lafon



Ex: Estimating Pose of Images of Faces

Spectral basis for visualization

Spectral Series Regression
(seconds)

Isomap Face Database
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Scalability: Preliminary Results 

Benefits of using the randomized SVD (Halko et al, 
2011). Parallelizable algorithm.
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