

Discovery and Characterization of RR Lyrae from Sparsely Sampled Light Curves Using Parsimonious Models

James Long

Texas A&M University

June 9, 2016

Period Estimation Methods

Parsimonious Model for RR Lyrae Variables

Simulations

Texas A&M Collaboration

Lucas Macri

Jennifer Marshall

James Long

Period Estimation Methods

Parsimonious Model for RR Lyrae Variables

Simulations

Periodic Variable Stars

Periodic variables: Stars that repeat brightness variation over a fixed period.

- Star observed \approx 250 times in 5 bands, u, g, r, i, z.
- Data for star is $D = \{t_{jb}, m_{jb}, \sigma_{jb}\}_{j=1}^{n_b}$ for $b = 1, \dots, B$.
- Observe brightness m_{jb} at time t_{jb} with uncertainty σ_{jb} in band b.

Folded Light Curve of Periodic Variable

Folded light curve: Brightness versus time modulo period.

SDSS-III Stripe 82 [2]

- Collected \approx 60,000 variables in Stripe 82 Region
- Variables belong to different classes
- Some periodic, some not

Example of Variable Star Science

► For RR Lyrae variable stars distance is a function of mean brightness in V:

$$d = 10^{(V - M_V + 5)/5}$$

 Discover structure in the Milky Way halo by finding, estimating distances to RR Lyrae

Sesar [10] using SDSS Stripe 82 Data

Compare observed structure to cosmological simulations.

Mapping Galactic Halo with DES

Dark Energy Survey (DES)

- ▶ 10 photometric measurements in (g,i,r,z,Y) over five years
- depths to 24 mag in i
- ► 5000 square degrees
- few million variable stars

DES is deeper and wider than SDSS Stripe 82, but much more sparsely sampled.

Period Estimation Methods

Parsimonious Model for RR Lyrae Variables

Simulations

Method: Model light curve variation in each filter as sinusoid with *K* harmonics. [6, 14, 4, 8, 9]

$$m_{jb} = \beta_b + \sum_{k=1}^{K} a_{bk} \sin(\omega t_{jb} + \phi_{bk}) + \epsilon_{jb}$$

where $\epsilon_{jb} \sim N(0, \sigma_{jb}^2)$.

- (2K+1)B+1 parameters. Pure sine 3B+1 parameters.
- \blacktriangleright Maximum likelihood has closed form solution at fixed ω
 - Maximization strategy: Grid search on ω .

Example of Maximum Likelihood Fit with K = 2

Total of 26 parameters, model estimates period well.

12 / 28

Output from Model Useful for Classification

Problem: Sparsely Sampled Light Curves

Pan-STARRS light curve. Period estimation difficult for this quality data.

Period Estimation Methods

Parsimonious Model for RR Lyrae Variables

Simulations

Parsimonious RR Lyrae Model

global parameters fit once for all RR Lyrae

individual parameters fit for each RR Lyrae

• Data
$$D = \{\{t_{jb}, m_{jb}, \sigma_{jb}\}_{j=1}^{n_b}\}_{b=1}^B$$

Normal measurement error model:

$$m_{jb} = m_b(t_{jb}) + \epsilon_{jb}$$

where $\epsilon_{jb} \sim N(0, \sigma_{jb}^2)$.

γ_b Estimated from SDSS Stripe 82 RR Lyrae

$$RSS(\omega, \mu, E[B - V], a, \phi) \equiv \sum_{b=1}^{B} \sum_{j=1}^{n_b} \left(\frac{m_{jb} - \mu - M_b - E[B - V]R_b - a\gamma_b(\omega t_{jb} + \phi)}{\sigma_{jb}} \right)^2$$

Estimate parameters with maximum likelihood (χ^2 minimization):

- Likelihood is highly multimodal in ω , grid search.
- Model is linear in μ , E[B V], and a, closed form updates.
- Warm start Newton–Raphson updates for ϕ .

Period Estimation Methods

Parsimonious Model for RR Lyrae Variables

Simulations

Simulation

Downsample Stripe 82 variables to 20 observations across all bands:

- Can we estimate periods correctly for RR Lyrae?
- ► Can we separate RR Lyrae from non-RR Lyrae?
- Can we estimate distances accurately?
- ► Can we reproduce halo maps of Sesar 2010?

Simulation Results for Period Estimation

Simulation Results for Classification

- Visually good separation with small number of features.
- ▶ Potential to use model output as feature input to classifier.

Simulation Results for Distance Estimation

- Use model to estimate distance modulus (μ) for RR Lyrae.
- Convert μ to distance (d) in parsecs: $d = 10^{\mu/5+1}$

Period Estimation Methods

Parsimonious Model for RR Lyrae Variables

Simulations

Related Work

Period Estimation Algorithms / Variable Star Models:

- Sinusoid Based Methods
 - ► Lomb Scargle (LS) [4, 8]
 - Generalized LS (GLS) [14]
 - Multiband Extensions [12, 5].
 - AoV [9]
- "Non-parametric" methods
 - Phase Dispersion Minimization [11]
 - Supersmoother [10]
- Template Based Methods
 - ▶ RR Lyrae templates by Sesar [10], Kovacs [3]
 - ► Cepheid templates by Pejcha [7], Yoachim [13]

Finding RR Lyrae in Sparsely Sampled Light Curves:

▶ Hernitschek [1] uses structure functions to find RRL / QSO.

- Model refinements:
 - ► *M_b* dependence on period, metallicity.
 - Bands other than g, i, u, r, z
 - Parameterize γ_b to account for shape differences across RRL
- Propagate uncertainty to 3D halo density estimate
 - Treat as Inference Problem: Bayesian posterior or frequentist confidence bands. Hierarchical model?
 - Treat as Prediction Problem: Evaluate distance / density estimates using Stripe 82 data or follow-up observations.
- Milky Way Halo maps using DES data

Bibliography I

- [1] Nina Hernitschek, Edward F Schlafly, Branimir Sesar, Hans-Walter Rix, David W Hogg, Željko Ivezić, Eva K Grebel, Eric F Bell, Nicolas F Martin, WS Burgett, et al. Finding, characterizing, and classifying variable sources in multi-epoch sky surveys: Qsos and rr lyrae in ps1 3π data. The Astrophysical Journal, 817(1):73, 2016.
- [2] Željko Ivezić, J Allyn Smith, Gajus Miknaitis, Huan Lin, Douglas Tucker, Robert H Lupton, James E Gunn, Gillian R Knapp, Michael A Strauss, Branimir Sesar, et al. Sloan digital sky survey standard star catalog for stripe 82: The dawn of industrial 1% optical photometry. *The Astronomical Journal*, 134(3):973, 2007.
- [3] Géza Kovács and G Kupi. Computation of the fourier parameters of rr lyrae stars by template fitting. Astronomy & Astrophysics, 462(3):1007–1016, 2007.
- [4] Nick R Lomb. Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39(2):447–462, 1976.
- [5] James P Long, Eric C Chi, and Richard G Baraniuk. Estimating a common period for a set of irregularly sampled functions with applications to periodic variable star data. arXiv preprint arXiv:1412.6520, 2014.
- [6] N Mondrik, JP Long, and JL Marshall. A multiband generalization of the multiharmonic analysis of variance period estimation algorithm and the effect of inter-band observing cadence on period recovery rate. *The Astrophysical Journal Letters*, 811(2):L34, 2015.
- [7] Ondřej Pejcha and Christopher S Kochanek. A global physical model for cepheids. The Astrophysical Journal, 748(2):107, 2012.

Bibliography II

[8] Jeffrey D Scargle.

Studies in astronomical time series analysis. ii-statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263:835–853, 1982.

[9] A Schwarzenberg-Czerny.

Fast and statistically optimal period search in uneven sampled observations. The Astrophysical Journal Letters, 460(2):L107, 1996.

- [10] Branimir Sesar, Željko Ivezić, Skyler H Grammer, Dylan P Morgan, Andrew C Becker, Mario Jurić, Nathan De Lee, James Annis, Timothy C Beers, Xiaohui Fan, et al. Light curve templates and galactic distribution of rr lyrae stars from sloan digital sky survey stripe 82. The Astrophysical Journal, 708(1):717, 2010.
- [11] RF Stellingwerf. Period determination using phase dispersion minimization. The Astrophysical Journal, 224:953–960, 1978.
- [12] Jacob T VanderPlas and Željko Ivezic. Periodograms for multiband astronomical time series. The Astrophysical Journal, 812(1):18, 2015.
- [13] Peter Yoachim, Les P McCommas, Julianne J Dalcanton, and Benjamin F Williams. A panoply of cepheid light curve templates. The Astronomical Journal, 137(6):4697, 2009.
- [14] M Zechmeister and M Kürster.

The generalised lomb-scargle periodogram-a new formalism for the floating-mean and keplerian periodograms. Astronomy & Astrophysics, 496(2):577–584, 2009.