Probability functions for unbiased statistical estimations in multi-filter surveys: the luminosity function

Carlos López-Sanjuan E. Tempel, K. Viironen, A. Molino, W. A. Santos, N. Benítez, A. F. Soto, A. J. Cenarro, J. Varela, L. A. Díaz-García, & the ALHAMBRA collaboration

Centro de Estudios de Física del Cosmos de Aragón (Spain) 7th Jun 2016 / SCMA VI

Funding agencies :

Most of our knowledge about the evolution of galaxies is based on galaxy distributions ϕ from surveys.

J-PAS (Benitez+14) : 8500deg^2 with 56 narrow-band filters ($NB \lesssim 22.5$) for 0.3% photo-z ($R \sim 50$). 2017. j-pas.org

Euclid (Laureijs+11): 15000deg² with NIR imaging (Y, J, H) and R = 350 spectroscopy. **2020**. www.euclid-ec.org

LSST (Ivezić+08) : 18000deg^2 with 6 broad-band filters ($BB \lesssim 26$) for 3% photo—z and time domain. 2023. www.lsst.org

Most of our knowledge about the evolution of galaxies is based on galaxy distributions ϕ from surveys.

J-PAS (Benítez+14) : 8500deg² with 56 narrow-band filters (*NB* \leq 22.5) for 0.3% photo-z (*R* \sim 50). 2017. j-pas.org

Euclid (Laureijs+11) : 15000deg^2 with NIR imaging (Y, J, H) and R = 350 spectroscopy. 2020. www.euclid-ec.org

LSST (Ivezić+08): 18000deg² with 6 broad-band filters $(BB \leq 26)$ for 3% photo-z and time domain. 2023. www.lsst.org

Most of our knowledge about the evolution of galaxies is based on galaxy distributions ϕ from surveys.

J-PAS (Benítez+14) : 8500deg² with 56 narrow-band filters (*NB* \leq 22.5) for 0.3% photo-z (*R* \sim 50). 2017. j-pas.org

Euclid (Laureijs+11) : 15000deg^2 with NIR imaging (Y, J, H) and R = 350 spectroscopy. 2020. www.euclid-ec.org

LSST (Ivezić+08) : 18000deg² with 6 broad-band filters $(BB \leq 26)$ for 3% photo-z and time domain. 2023. www.lsst.org

$$\delta_{\phi}^{\mathbf{2}} = \delta_{\mathrm{stat}}^{\mathbf{2}} + \delta_{\mathrm{CV}}^{\mathbf{2}} + \delta_{\mathrm{sys}}^{\mathbf{2}}$$

Most of our knowledge about the evolution of galaxies is based on galaxy distributions ϕ from surveys.

J-PAS (Benítez+14) : 8500deg² with 56 narrow-band filters (*NB* \leq 22.5) for 0.3% photo-z (*R* \sim 50). 2017. j-pas.org

Euclid (Laureijs+11) : 15000deg^2 with NIR imaging (Y, J, H) and R = 350 spectroscopy. 2020. www.euclid-ec.org

LSST (Ivezić+08) : 18000deg² with 6 broad-band filters $(BB \leq 26)$ for 3% photo-z and time domain. 2023. www.lsst.org

$$\delta_{\phi}^{\mathbf{2}} = \delta_{\text{stat}}^{\mathbf{2}} + \delta_{\text{CV}}^{\mathbf{2}} + \delta_{\text{sys}}^{\mathbf{2}}$$

Most of our knowledge about the evolution of galaxies is based on galaxy distributions ϕ from surveys.

J-PAS (Benítez+14) : 8500deg² with 56 narrow-band filters (*NB* \leq 22.5) for 0.3% photo-z (*R* \sim 50). 2017. j-pas.org

Euclid (Laureijs+11) : 15000deg^2 with NIR imaging (Y, J, H) and R = 350 spectroscopy. 2020. www.euclid-ec.org

LSST (Ivezić+08) : 18000deg² with 6 broad-band filters $(BB \leq 26)$ for 3% photo-z and time domain. 2023. www.lsst.org

$$\delta_{\phi}^{\mathbf{2}} = \delta_{\text{stat}}^{\mathbf{2}} + \delta_{\text{CV}}^{\mathbf{2}} + \delta_{\text{sys}}^{\mathbf{2}}$$

Future surveys **PDF** approach **PROFUSE** $\Phi(z, M_B)$

The importance of the posterior

What is the "**real**" redshift distribution N(z) or the "**real**" luminosity function $\Phi(z, M_B)$ in a photometric survey?

With the best z_p

$$N(z_s) = \int N(z_p) P(z_s|z_p) dz_p$$

(De)convolution process. *z_s* are needed!! (Sheth+10)

With the posterior probability

 $N(z_s) = \sum_i \text{PDF}_i(z)$

Addition process of Probability Distribution Functions (PDFs)

Only photometry!! (Sheth+10)

Future surveys **PDF** approach **PROFUSE** $\Phi(z, M_B)$

The importance of the posterior

What is the "**real**" redshift distribution N(z) or the "**real**" luminosity function $\Phi(z, M_B)$ in a photometric survey?

With the best z_p

$$N(z_s) = \int N(z_p) P(z_s|z_p) dz_p$$

(De)convolution process. *z_s* are needed!! (Sheth+10)

With the posterior probability

 $N(z_s) = \sum_i \text{PDF}_i(z)$

Addition process of Probability Distribution Functions (PDFs)

Only photometry!! (Sheth+10)

Future surveys PDF approach PROFUSE $\Phi(z, M_R)$

The importance of the posterior

What is the "**real**" redshift distribution N(z) or the "**real**" luminosity function $\Phi(z, M_B)$ in a photometric survey?

With the best z_p

$$N(z_s) = \int N(z_p) P(z_s|z_p) dz_p$$

(De)convolution process. *z_s* are needed!! (Sheth+10)

With the posterior probability

 $N(z_s) = \sum_i \text{PDF}_i(z)$

Addition process of Probability Distribution Functions (PDFs)

Only photometry!! (Sheth+10)

The PROFUSE project

PRObability Functions for Unbiased Statistical Estimations profuse.cefca.es

in multi-filter surveys such as COMBO-17, COSMOS30, ALHAMBRA, SHARDS, (completed) PAU, J-PLUS, (on-going) J-PAS, Euclid, and LSST (coming soon)

Future surveys PDF approach PROFUSE $\Phi(z, M_R)$

ALHAMBRA

The luminosity function $\Phi(M_B)$

To improve our knowledge about $\Phi(z, M_B)$, we need (1) an accurate and unbiased photometric LF estimator, and (2) a multi-filter photometric survey to apply it.

Future surveys PDF approach PROFUSE $\Phi(z, M_R)$

ALHAMBRA

The luminosity function $\Phi(M_B)$

To improve our knowledge about $\Phi(z, M_B)$, we need (1) an accurate and unbiased photometric LF estimator, and (2) a multi-filter photometric survey to apply it.

Future surveys PDF approach PROFUSE $\Phi(z, M_R)$

ALHAMBRA

The luminosity function $\Phi(M_B)$

To improve our knowledge about $\Phi(z, M_B)$, we need (1) an accurate and unbiased photometric LF estimator, and (2) a multi-filter photometric survey to apply it.

Future surveys PDF approach PROFUSE $\Phi(z, M_R)$

The luminosity function $\Phi(M_B)$

To improve our knowledge about $\Phi(z, M_B)$, we need (1) an accurate and unbiased photometric LF estimator, and (2) a multi-filter photometric survey to apply it.

Future surveys PDF approach PROFUSE $\Phi(z, M_R)$

The luminosity function $\Phi(M_B)$

To improve our knowledge about $\Phi(z, M_B)$, we need (1) an accurate and unbiased photometric LF estimator, and (2) a multi-filter photometric survey to apply it.

Filter set Sky coverage Photo-z PDFs

The ALHAMBRA survey

Advanced, Large, Homogeneous Area, Medium–Band Redshift Astronomical survey (Moles+08, alhambrasurvey.com)

The ALHAMBRA survey

Advanced, Large, Homogeneous Area, Medium–Band Redshift Astronomical survey (Moles+08, alhambrasurvey.com)

20 contiguous, non-overlapping medium-band (\sim 300Å) optical filters + 3 NIR filters (*J*, *H*, *K*_s). Limiting magnitude of \sim 24.0 (AB 5 σ , 3" aperture).

The ALHAMBRA survey

Advanced, Large, Homogeneous Area, Medium–Band Redshift Astronomical survey (Moles+08, alhambrasurvey.com)

Field name	Overlapping survey	area (deg ²)
ALHAMBRA-2 ALHAMBRA-3 ALHAMBRA-4 ALHAMBRA-5 ALHAMBRA-6 ALHAMBRA-7 ALHAMBRA-8	DEEP2 SDSS COSMOS GOODS-N AEGIS ELAIS-N1 SDSS	0.377 0.404 0.203 0.216 0.400 0.406 0.375
Total		2.381

7 independent fields to defeat (and study!) the cosmic variance (López-Sanjuan+14,15b) with a total high-quality area of 2.38 deg².

The ALHAMBRA survey

Advanced, Large, Homogeneous Area, Medium–Band Redshift Astronomical survey (Moles+08, alhambrasurvey.com)

300k galaxies with $\Delta z/(1+z)=0.012$ at $I\leq 24$ (Molino+14).

The PDF of each galaxy from BPZ2 (Benítez00).

The ALHAMBRA survey

Advanced, Large, Homogeneous Area, Medium–Band Redshift Astronomical survey (Moles+08, alhambrasurvey.com)

300k galaxies with $\Delta z/(1 + z) = 0.012$ at $I \le 24$ (Molino+14). The PDF of each galaxy from BPZ2 (Benítez00).

Probability Distribution Functions

The Bayesian Photometric Redshift (BPZ2, Benítez00) provides the redshift – template probability PDF (z, T).

Probability Distribution Functions

The redshift PDF is computed as $PDF(z) = \int PDF(z, T) dT$

Probability Distribution Functions

The redshift PDF is computed as $PDF(z) = \int PDF(z, T) dT$

Probability Distribution Functions

The redshift PDF is computed as PDF (z) = $\int PDF(z, E/S0) dT + \int PDF(z, S/SB) dT$

Probability Distribution Functions

The redshift PDF is computed as PDF (z) = $\int PDF(z, E/S0) dT + \int PDF(z, S/SB) dT$

PDF $(z, M_B) \Phi (z, M_B) \Sigma_{\Phi}$

The join $z - M_B$ posterior: PDF (z, M_B)

The luminosity function is $\Phi(z, M_B) = \sum_i \text{PDF}_i(z, M_B)$.

PDF $(z, M_B) \Phi (z, M_B) \Sigma_{\Phi}$

ALHAMBRA

The join $z - M_B$ posterior: PDF (z, M_B)

The starting point is the BPZ posterior PDF(z, T | C).

PDF $(z, M_B) \Phi (z, M_B) \Sigma_{\Phi}$

ALHAMBRA

The join $z - M_B$ posterior: PDF (z, M_B)

The luminosity function is $\Phi(z, M_B) = \sum_i \text{PDF}_i(z, M_B)$.

The function $M_B(z, T | I)$ maps the absolute magnitude with *z* and *T*.

PDF $(z, M_R) \Phi(z, M_R) \Sigma_{\Phi}$

ALHAMBRA

The join $z - M_B$ posterior: PDF (z, M_B)

The luminosity function is
$$\Phi(z, M_B) = \sum_i \text{PDF}_i(z, M_B)$$

We construct $P(z, M_B|I)$ weighting $M_B(z, T | I)$ by PDF(z, T).

PDF $(z, M_B) \Phi (z, M_B) \Sigma_{\Phi}$

ALHAMBRA

The join $z - M_B$ posterior: PDF (z, M_B)

The PDF of the *I*-band magnitude (e.g. Coppin06) PDF $(I_0) = P(I | I_0, \sigma_I) \times C(I_0)$

PDF $(z, M_B) \Phi (z, M_B) \Sigma_{\Phi}$

ALHAMBRA

The join $z - M_B$ posterior: PDF (z, M_B)

The luminosity function is $\Phi(z, M_B) = \sum_i \text{PDF}_i(z, M_B)$.

PDF $(z, M_R) \Phi(z, M_R) \Sigma_{\Phi}$

ALHAMBRA

The join $z - M_B$ posterior: PDF (z, M_B)

The luminosity function is $\Phi(z, M_B) = \sum_i \text{PDF}_i(z, M_B)$.

 $P(z, M_B|I) * PDF(I_0 - I|0, \sigma_I)$

PDF $(z, M_B) \Phi (z, M_B) \Sigma_{\Phi}$

ALHAMBRA

The join $z - M_B$ posterior: PDF (z, M_B)

The luminosity function is $\Phi(z, M_B) = \sum_i \text{PDF}_i(z, M_B)$.

In the following, $I_0 \leq 24$.

PDF $(z, M_B) \Phi(z, M_B) \Sigma_{\Phi}$

ALHAMBRA

The ALHAMBRA $\Phi(z, M_B)$

$$\Phi_{\rm HD}(z, M_B) = \frac{1}{A} \sum_{i} \text{PDF}_i(z, M_B) \left(\frac{\mathrm{d}V}{\mathrm{d}z}\right)^{-1} [\mathrm{mag}^{-1} \mathrm{Mpc}^{-3}]$$

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

PDF $(z, M_B) \Phi(z, M_B) \Sigma_{\Phi}$

ALHAMBRA

The ALHAMBRA $\Phi(z, M_B)$

$$\Phi_{\rm LD}\left(z_k, M_{B,q}\right) = \frac{1}{\Delta V_k \Delta M_{B,q}} \int \int \Phi_{\rm HD}\left(z, M_B\right) \frac{\mathrm{d}V}{\mathrm{d}z} \,\mathrm{d}z \,\mathrm{d}M_B$$

PDF $(z, M_B) \Phi(z, M_B) \Sigma_{\Phi}$

$\Phi(z, M_B)$ as a function of spectral type

 $\Phi(z, M_B | S/SB)$

ALHAMBRA

 $\Phi(z, M_B | E/S0)$

 $HD \rightarrow LD$

PDF $(z, M_B) \Phi(z, M_B) \Sigma_{\Phi}$

$\Phi(z, M_B)$ as a function of spectral type

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

PDF $(z, M_B) \Phi(z, M_B) \Sigma_{\Phi}$

The modelling of $\Phi(z, M_B)$

Observations

 $\$ χ^2 with emcee

Model + selection effects

PDF $(z, M_B) \Phi(z, M_B) \Sigma_{\Phi}$

The modelling of $\Phi(z, M_B)$

Model + selection effects

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

PDF $(z, M_B) \Phi (z, M_B) \Sigma_{\Phi}$

-23

-22

The modelling of $\Phi(z, M_B)$

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

The modelling of $\Phi(z, M_B)$

(1) We have an unbiased estimator $(\delta_{ m sys} ightarrow$ 0) of $\Phi(z, M_B)$ thanks to the ALHAMBRA PDFs

(2) To perfom a robust modelling of $\Phi(z, M_B)$, we have to compute the the covariance matrix Σ_{Φ} ,

$$\chi^{2} = \frac{1}{2} [\Phi - \Phi_{mod}]^{T} \Sigma_{\Phi}^{-1} [\Phi - \Phi_{mod}]$$

The covariance matrix must include Σ_{stat} and $\Sigma_{CV}.$

Observations vs Model

The modelling of $\Phi(z, M_B)$

(1) We have an unbiased estimator $(\delta_{\rm sys}
ightarrow 0)$ of $\Phi(z, M_B)$ thanks to the ALHAMBRA PDFs

(2) To perfom a robust modelling of $\Phi(z, M_B)$, we have to compute the the covariance matrix Σ_{Φ} ,

$$\chi^2 = \frac{1}{2} [\Phi - \Phi_{mod}]^T \Sigma_{\Phi}^{-1} [\Phi - \Phi_{mod}]$$

The covariance matrix must include Σ_{stat} and $\Sigma_{CV}.$

Observations vs Model

ALHAMBRA

ALHAMBRA

ALHAMBRA

ALHAMBRA

PDF $(z, M_B) \Phi(z, M_B) \Sigma_{\Phi}$

The modelling of $\Phi(z, M_B)$

(1) We have an unbiased estimator $(\delta_{
m sys}
ightarrow 0)$ of $\Phi(z, M_B)$ thanks to the ALHAMBRA PDFs

(2) We have estimated the covariance matrix Σ_Φ to ensure a robust modelling of Φ.

$$\chi^2 = \frac{1}{2} [\Phi - \Phi_{mod}]^T \Sigma_{\Phi}^{-1} [\Phi - \Phi_{mod}]$$

Now we can enjoy the results!!

Observations vs Model

 $\Phi(z, M_B \mid S/SB) \Phi(z, M_B \mid E/S0)$

The ALHAMBRA $\Phi(z, M_B | S/SB)$

ALHAMBRA

DEEP2 + COMBO-17 (Faber+07)

$$M_B^* = -21.00 - 0.99(z - 0.5)$$
$$\log \phi^* = -2.51 - 0.02(z - 0.5)$$
$$\alpha = -1.28$$

The ALHAMBRA $\Phi(z, M_B | S/SB)$

DEEP2 + COMBO-17 (Faber+07)

$$M_B^* = -21.00 - 0.99(z - 0.5)$$
$$\log \phi^* = -2.51 - 0.02(z - 0.5)$$
$$\alpha = -1.28$$

The ALHAMBRA $\Phi(z, M_B | S/SB)$

DEEP2 + COMBO-17 (Faber+07)

$$M_B^* = -21.00 - 0.99(z - 0.5)$$
$$\log \phi^* = -2.51 - 0.02(z - 0.5)$$
$$\alpha = -1.28$$

The ALHAMBRA $\Phi(z, M_B | S/SB)$

$$M_B^* = -21.00 - 0.99(z - 0.5)$$
$$\log \phi^* = -2.51 - 0.02(z - 0.5)$$
$$\alpha = -1.28$$

 $\Phi(z, M_B \mid S/SB) \Phi(z, M_B \mid E/S0)$

The ALHAMBRA $\Phi(z, M_B | E/S0)$

Bright galaxies

$$\begin{split} M^*_B &= -20.83 - 0.77(z-0.5) \\ \log \phi^* &= -2.69 - 0.35(z-0.5) \\ \alpha &= -0.59 \end{split}$$

Faint galaxies

$$M_{B,\mathrm{f}} = -17.3; \, \phi_{\mathrm{f}} = \phi^{*}$$

 $\beta = -1.59$

Madgwick+02,Salimbeni+08,Drory+09,etc.

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

 $\Phi(z, M_B | S/SB) \Phi(z, M_B | E/S0)$

The ALHAMBRA $\Phi(z, M_B | E/S0)$

$$\begin{split} M^*_B &= -20.83 - 0.77(z-0.5) \\ \log \phi^* &= -2.69 - 0.35(z-0.5) \\ \alpha &= -0.59 \end{split}$$

 $\mu_{B,f} = -17.3, \, \varphi_f = \varphi^*$

Madgwick+02,Salimbeni+08,Drory+09,etc

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

 $\Phi(z, M_B | S/SB) \Phi(z, M_B | E/S0)$

The ALHAMBRA $\Phi(z, M_B | E/S0)$

Bright galaxies

$$\begin{split} M^*_{\mathcal{B}} &= -20.83 - 0.77(z-0.5) \\ \log \phi^* &= -2.69 - 0.35(z-0.5) \\ \alpha &= -0.59 \end{split}$$

Faint galaxies

$$M_{B,\mathrm{f}} = -17.3; \, \phi_\mathrm{f} = \phi^* \ eta = -1.59$$

Madgwick+02,Salimbeni+08,Drory+09,etc.

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

 $\Phi(z, M_B | S/SB) \Phi(z, M_B | E/S0)$

The ALHAMBRA $\Phi(z, M_B | E/S0)$

Bright galaxies

$$\begin{split} M^*_B &= -20.83 - 0.77(z-0.5) \\ \log \phi^* &= -2.69 - 0.35(z-0.5) \\ \alpha &= -0.59 \end{split}$$

Faint galaxies

$$M_{B,\mathrm{f}} = -17.3; \, \phi_\mathrm{f} = \phi^* \ eta = -1.59$$

Madgwick+02,Salimbeni+08,Drory+09,etc.

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

 $\Phi(z, M_B | S/SB) \Phi(z, M_B | E/S0)$

The ALHAMBRA $\Phi(z, M_B | E/S0)$

Bright galaxies

$$\begin{split} M^*_B &= -20.83 - 0.77(z-0.5) \\ \log \phi^* &= -2.69 - 0.35(z-0.5) \\ \alpha &= -0.59 \end{split}$$

Faint galaxies

$$M_{B,\mathrm{f}} = -17.3; \, \phi_\mathrm{f} = \phi^* \ eta = -1.59$$

Madgwick+02,Salimbeni+08,Drory+09,etc.

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

-1.5

 $\Phi(z, M_B | S/SB) \Phi(z, M_B | E/S0)$

The ALHAMBRA $\Phi(z, M_B | E/S0)$

Bright galaxies

$$\begin{split} M^*_B &= -20.83 - 0.77(z-0.5) \\ \log \phi^* &= -2.69 - 0.35(z-0.5) \\ \alpha &= -0.59 \end{split}$$

Faint galaxies

$$M_{B,\mathrm{f}} = -17.3; \, \phi_\mathrm{f} = \phi^* \ eta = -1.59$$

Madgwick+02,Salimbeni+08,Drory+09,etc.

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

 $\Phi(z, M_B | S/SB) \Phi(z, M_B | E/S0)$

ALHAMBRA

The ALHAMBRA $\Phi(z, M_B | E/S0)$

 $M_B^* = -20.83 - 0.77(z - 0.5)$ $\log \phi^* = -2.69 - 0.35(z - 0.5)$ $\alpha = -0.59$

$$M_{B,\mathrm{f}} = -17.3; \, \phi_\mathrm{f} = \phi^* \ eta = -1.59$$

Madgwick+02,Salimbeni+08,Drory+09,etc.

C. López-Sanjuan @ CEFCA @ SCMA VI @ CMU

Sumary and conclusions

ALHAMBRA Luminosity Function (profuse.cefca.es)

Using the ALHAMBRA PDFs, we have developed an **unbiased LF estimator**.

We have estimated $\Phi(z, M_B)$ for red and blue galaxies, and **accurately modelled** the observed LF **thanks to** Σ_{Φ} .

Our results agree with the literature:

- M_B^* fades by 1.0 mag since z = 1 and ϕ^* is nearly constant, reflecting the descent in the star formation rate.
- The red sequence is accreting new members: a significant population (10%-15%) of faint, red galaxies is present at *z* < 1.

We will have suited tools for the next generation large-area surveys J-PAS, Euclid, and LSST.

Thanks for your attention!!

Sumary and conclusions

ALHAMBRA Luminosity Function (profuse.cefca.es)

Using the ALHAMBRA PDFs, we have developed an **unbiased LF estimator**.

We have estimated $\Phi(z, M_B)$ for red and blue galaxies, and **accurately modelled** the observed LF **thanks to** Σ_{Φ} .

Our results agree with the literature:

- M_B^* fades by 1.0 mag since z = 1 and ϕ^* is nearly constant, reflecting the descent in the star formation rate.
- The red sequence is accreting new members: a significant population (10%-15%) of faint, red galaxies is present at *z* < 1.

We will have suited tools for the next generation large-area surveys J-PAS, Euclid, and LSST.

Thanks for your attention!!