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Cosmic demographics
The rise of Bayesian multilevel modeling
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1989: SN 1987A ν dynamic spectroscopy: N ≈ 24
1998: BATSE GRB fluxes, directions, distances: N ≈ 103
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Thinned latent point process marginal likelihood function

TL & Ira Wasserman 1993, 1995, 1998
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Handling 24 latent parameters, ca. 1990

FPS 164 Cray Supercomputer

computerhistory.org NCSA
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Modern cosmic MLMs

CHASC’s x ray spectroscopy model, 2001
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SCMA 5 & 6

BayeSN (Mandel 2011, 2016) Celeste (McAuliffe 2016)

7 / 34



Menu

1 Catalogs: Report likelihood functions

2 Point estimates: Fogetaboutit!

3 Population distributions: Multiplying vs. summing

4 Low-D MLMs: Cubature vs. importance sampling

5 Functional data analysis: Demographics of light
curves & spectra
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Basic cosmic demography

Population
parameters ✓
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Latent object
properties

Data

N

 i

Density estimation
with measurement error

For ψi = zi : Galaxy redshift distribution function

For ψi = Fi : Number-size dist’n, number counts, logN–log S
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Building catalogs

Catalogs enable the community to do science based on an imposing
dataset without requiring analysis/modeling of the raw data

Catalog content (data summaries, software, documentation)
should:

• Enable sound science with minimized effort
Avoid doing things that users must undo!

• Discourage misuse/misinterpretation
Don’t make the catalog look like something it isn’t!

Catalog builders should do demographic science with their
data—they may be the best people to do so—but they should do it
elsewhere!
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From SCMA 5 (and earlier!)

See arXiv:1208.3036
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Likelihoods are what MLMs require (not posteriors!)

✓

Di

N

 i

A graphical (multilevel/hierarchical) model specifies
the joint dist’n for data and parameters (pop’n and
latent):

p(θ, z ,D) = p(θ)
N∏
i=1

p(zi |θ) p(Di |zi ) || M

∝ π(θ)
∏
i

f (zi ; θ) `i (zi )

with member likelihood functions

`i (zi ) ∝ p(Di |zi )
Bayes’s theorem gives the posterior for all params:

p(θ, z |D) =
p(θ, z ,D)

p(D)
∝ p(θ, z ,D)
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p(θ, z |D) ∝ π(θ)
∏
i

f (zi ; θ) `i (zi )

Marginal posterior for pop’n params:

p(θ|D) ∝ π(θ)
∏
i

∫
dzi f (zi ; θ) `i (zi )

Marginal posterior for member properties (“hierarchical
Bayes”):

p(z |D) =

∫
dθ p(θ, z |D)

∝
[∏

i

`i (zi )

]
×
∫

dθ π(θ)
∏
i

f (zi ; θ)

≡
[∏

i

`i (zi )

]
× F (z1, . . . , zN)
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p(z |D) ∝
[∏

i

`i (zi )

]
× F (z1, . . . , zN)

where F (z1, . . . , zN) is an exchangeable joint prior for the
member properties (deFinetti’s theorem!)—correlated

The zi are all dependent because the population dist’n is
being learned from all of them

The least precisely measured properties are the most
dependent—and usually the most numerous

Flow
of

Information

✓

z1 z2
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Providing posteriors necessitates de-prioring. . .

Suppose the cataloger provides posteriors based on a pop’n
dist’n h(z ;ψ), with a fixed value of ψ (a priori, or a point
estimate)

pi (zi |ψ,M ′) ∝ h(zi ;ψ) `i (zi )

The analyst using M with f (z ; θ) now must “de-prior”:

p(θ, z |D) ∝ π(θ)
∏
i

f (zi ; θ)
pi (zi |ψ,M ′)
h(zi ;ψ)

Okay, that’s doable—but a hassle
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. . . unless the catalog makes it impossible!

Suppose the cataloger is “ambitious” and presents a “fully
probabilistic catalog” via hierarchical Bayes, e.g., providing
posterior samples from

p(z |D,M ′) ∝
[∏

i

`i (zi )

]
× H(z1, . . . , zN)

Now it’s not easy to recover the member likelihoods!

If N is uncertain, it’s harder still—“label switching problem”

There are ways to work around this—but let’s try to avoid it

Separate cataloging from scientific analysis, and have catalogs
report quantities that are as easy as possible to use

This will sometimes not be easy! E.g., crowded fields. . .

Rethink detection: Rather than a source detection decision
boundary, there should be decision boundaries that determine what
type of likelihood summary is associated with each potential
candidate source location (See Budavári, Szalay, TL forthcoming)
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We (Broadbent, Wolpert, TL, Hakkila) like hierarchical,
trans-dimensional modeling—for specific science goals. It tends to
be inflexible for re-use.

Bayesian droplets (Lévy adaptive regression kernels)

BATSE GRB droplet decomposition 

HST image droplet decomposition (simulated)
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A conjugate MLM: Gamma-Poisson

Goal: Learn a flux dist’n from photon counts

Qualitative

Population
parameters

Source
properties

Observed
data

✓

F1 F2 FN

n1 n2 nN

Quantitative

θ = (α, s) or (µ, σ)

π(θ) = Flat(µ, σ)

p(Fi |θ) = Gamma(Fi |θ)

p(ni |Fi ) = Pois(ni |εiFi )

Simulations: N = 60 sources from gamma with 〈F 〉 = 100 and σF = 30;
exposures spanning dynamic range of ×16
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Gamma-Poisson population and member estimates
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Competing data analysis goals

“Shrunken” member estimates provide improved & reliable
estimate for population member properties

But they are under-dispersed in comparison to the true values →
not optimal for estimating population properties∗

No point estimates of member properties are good for all tasks!

We should view data catalogs as providing
descriptions of member likelihood functions,

not “estimates with errors”

∗Louis (1984); Eddington noted this in 1940!
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From likelihoods to distributions

Delta-function model

Suppose all galaxies are at the same (unknown) redshift, ξ

How to use the member likelihoods to infer ξ?

zi

�(zi � ⇠)

⇠

24 / 34



The population parameter is θ = ξ

p(ξ, z |D) ∝ π(ξ)
∏
i

δ(zi − ξ) `i (zi )

p(ξ|D) ∝ π(ξ)
∏
i

∫
dzi δ(zi − ξ) `i (zi )

= π(ξ)
∏
i

`i (ξ)
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Sum of deltas

Now consider a sum of deltas at fixed locations ξj , but with
unknown amplitudes fj to be estimated

zi⇠1

f1�(zi � ⇠1)

⇠2

f2�(zi � ⇠2)
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The population parameters are θ = f ≡ {fj} for j = 1 to M:

p(f , z |D) ∝ π(f )
∏
i

[f1δ(zi − ξ1) + f2δ(zi − ξ2) + · · · ] `i (zi )

p(f |D) ∝ π(f )
∏
i

[f1`i (ξ1) + f2`i (ξ2) + · · · ]

= π(f )
∏
i

∑
j

fj `i (ξj)


A product-of-sums, with sums corresponding to the `i (zi ) integrals
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Product-of-sums:

p(f |D) = π(ξ)
∏
i

[f1`i (ξ1) + f2`i (ξ2) + · · · ]

Gather terms, or use the law of total probability, to get a
sum-of-products representation, summing over partitions $ of the
members into sets Sj of Nj objects assigned to component j :

p(f |D) ∝ π(f )
∑
$

 N!

N1! · · ·NM !
f N1
1 · · · f N1

M

×

∏
i∈S1

`i (ξ1)

 · · ·
 ∏

i∈SM

`i (ξM)


A sum over ways to slice the member likelihoods and assign the
slices to redshift “bins”

The “sum the uncertainties” intuition is sound, if you are careful over
exactly what alternatives you are summing over—assignments of objects
to redshift intervals
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1-D lower-level MLM marginalization
For a Gaussian member likelihood function and power-law f (z ; θ),
compute: ∫

dzi f (zi ; θ) `i (zi )

Compare normal-kernel importance sampling (i.e., using posterior
samples based on flat interim prior) and Gauss-Hermite quadrature

Normal importance sampling Gauss-Hermit quadrature
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CUDAHM for big-data single-plate MLMs
Tamás Budavári, Brandon Kelly, TL, János Szalai-Gindl
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N

 i

Density estimation
with measurement error

Conditional independence ⇒ plates are “embarassingly parallel”:

• Metropolis-with-Gibbs: Sample θ on CPU, member properties on
GPU using Robust Adaptive Metropolis (RAM)
• Quadrature and cubature rules for 1-D to 3-D member properties
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Functional Data Analysis (FDA)

Actually the greatest, weirdest time-lapse movie. . .

• Each frame is one color (filter)—colors not synchronized

• Frame rate is highly uneven; large gaps

• Patches of the sky observed differently

• Many dim, noisy sources

Data are multiband, irregularly sampled,asynchronous, light curves;
with heteroskedastic & asymmetric errors; censored
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Functional Data Analysis (FDA)
FDA = statistical methods tailored for learning, classifying,
predicting with populations of functions

Frequentist FDA: Registration, functional PCA, functional mixed
effects, function-on-function regression. . .

Bayesian FDA: Modeling strategies for multilevel models for
functional data (parametric & nonparametric)

2009 20111997, 2005
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