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SCMA demographics

The conference was held on August 11-14, 1991, at the
University Park campus of the Pennsylvania State University. Of the 131

I Eric D. Feigelson / G. Jogesh Babu Il

participants, approximately 40% were statisticians and 60% astronomers.
Twenty percent were graduate students. divided equally between the fields.

Statis lC al Participants arrived from 12 countries. Several distinguished statisticians

_ wJUCVIDVIN (M (including 11 Fellows of the INS, 8 Fellows of the ASA. 2 past presidents
Ch ll of the IMS. and editors of several important journals) and astronomers
a enges (including a Fellow of the Royal Society) participated.
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Cosmic demographics
The rise of Bayesian multilevel modeling

Population
parameters

Detections Non-detections
Latent source
observables
@ O; =t;, Fi, 7z, . ..
x|

¢ Unknown number

of non-detections
Data

@

Known but
. informative B N
Summarize via Summarize via
source likelihoods exposure/efficiency
61(01') Ep(Dz|Ol) 6(t,0)

1989: SN 1987A v dynamic spectroscopy: N = 24
1998: BATSE GRB fluxes, directions, distances: N =~ 103
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Thinned latent point process marginal likelihood function

In LW95 we gave a detailed derivation of the form
of the likelihood function for gamma-ray burst (GRB) data
such as that provided by BATSE. It can be written as

P(P) = exp |:—T jd(b jdmi(@, n) %]
dR

X Hfd@ Jvdn,?i((b, ")dfl)dn' W)

Here T is the duration of the observations, #(®, n) is the
time-averaged detection efficiency for bursts of flux @ from
direction n, and Z(®, n) is the probability for seeing the
data for burst i, presuming it comes from a burst with peak
flux ® and direction n. We call Z(®, n) the individual burst
likelihood function; it is the function one would use to infer
the properties of a particular burst. LW9S derive expres-
sions for 7(®, n) and L (D, n) in terms of raw photon count
data in the eight BATSE detectors.

TL & Ira Wasserman 1993, 1995, 1998
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Handling 24 latent parameters, ca. 1990

FPS 164 Cray Supercomputer

What a Chief Executive must know
about Supercomputers:

&

David Kuck, Larry Smarr,
and the University of Illinois

computerhistory.org NCSA

5/34



Modern cosmic MLMs
CHASC's x ray spectroscopy model, 2001
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SCMA 5 & 6

BayeSN (Mandel 2011, 2016) Celeste (McAuliffe 2016)
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Menu

@ Catalogs: Report likelihood functions

@® Point estimates: Fogetaboutit!

© Population distributions: Multiplying vs. summing
O Low-D MLMs: Cubature vs. importance sampling

@ Functional data analysis: Demographics of light
curves & spectra
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@ Catalogs: Report likelihood functions
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Basic cosmic demography

Density estimation
with measurement error

Population
parameters

Latent object
properties

Data

For v; = z;: Galaxy redshift distribution function

For 1; = F;: Number-size dist'n, number counts, log N-log S
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Building catalogs

Catalogs enable the community to do science based on an imposing
dataset without requiring analysis/modeling of the raw data

Catalog content (data summaries, software, documentation)
should:

® Enable sound science with minimized effort
Avoid doing things that users must undo!

® Discourage misuse/misinterpretation
Don’t make the catalog look like something it isn’t!

Catalog builders should do demographic science with their
data—they may be the best people to do so—but they should do it
elsewhere!
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From SCMA 5 (and earlier!)

A crazy position?

Since no estimates are useful for all purposes, to make survey
information most useful to future investigators, survey catalogs
should not report estimates of source properties

The goal of a survey catalog should be to enable analysts to
evaluate likelihoods for diverse models of the survey data —
catalogs should report summaries of individual source (marginal)
likelihood functions

This should be done both for detections and nondetections
(requires more information than “upper limits")

Goal: Enable chains of discovery (c.f. Weinberg's remarks on
archival value of data)

See arXiv:1208.3036
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http://arxiv.org/abs/1208.3036

Likelihoods are what MLMs require (not posteriors!)

OROnO

A graphical (multilevel /hierarchical) model specifies
the joint dist'n for data and parameters (pop’'n and
latent):

N
p(0,z,D) = p(O)[]p(zil0) p(Dilzi) || M
i=1
o 7r(«9)Hf(z,-;0)€,-(z,-)

with member likelihood functions

E,‘(Z,') X p(D,'|Z,')

Bayes's theorem gives the posterior for all params:

p(0.2D) = P!

0,z,D)

o(D) x p(8,z,D)
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p(0,z|D) o m( Hf z; 0
Marginal posterior for pop'n params:
p(01D) o« (O] / dz; F(23:0) 0:(z)

Marginal posterior for member properties ( “hierarchical
Bayes"):

peD) = [ dop(6.210)

x [Hz,-(z,-)] X / dom(0) Hf(z,-;e)

Il
| —— |
z -
N
1\4

] X F(z1,...,2zn)
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p(z|D) [Hf z,]szl,...,zN)

where F(z1,...,zy) is an exchangeable joint prior for the
member properties (deFinetti's theorem!)—correlated

The z; are all dependent because the population dist'n is
being learned from all of them

The least precisely measured properties are the most
dependent—and usually the most numerous

@ Information @
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Providing posteriors necessitates de-prioring. . .

Suppose the cataloger provides posteriors based on a pop'n
dist'n h(z; 1)), with a fixed value of 1 (a priori, or a point
estimate)

pi(zil, M') o< h(zi; ) Li(z;)

The analyst using M with f(z;0) now must “de-prior”:

) P iy, M')
p(0,z|D) o ( Hf 22710)

Okay, that's doable—but a hassle

16
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. unless the catalog makes it impossible!

Suppose the cataloger is “ambitious” and presents a “fully
probabilistic catalog” via hierarchical Bayes, e.g., providing
posterior samples from

p(z|D, M") [Hﬁ (z)

Now it's not easy to recover the member likelihoods!

XHZl,...,ZN)

If N is uncertain, it's harder still—"label switching problem”

There are ways to work around this—but let's try to avoid it

Separate cataloging from scientific analysis, and have catalogs
report quantities that are as easy as possible to use

This will sometimes not be easy! E.g., crowded fields. ..

Rethink detection: Rather than a source detection decision
boundary, there should be decision boundaries that determine what
type of likelihood summary is associated with each potential
candidate source location (See Budavari, Szalay, TL forthcoming)
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We (Broadbent, Wolpert, TL, Hakkila) like hierarchical,
trans-dimensional modeling—for specific science goals. It tends to

be inflexible for re-use.

Bayesian droplets (Lévy adaptive regression kernels)

BATSE GRB droplet decomposition

Pulses from Iteration 30000, GRB 105, Channel 1

1800¢

1600

1400

Photon Counts.

600!

Photon Counts,

HST image droplet decomposition (simulated)

50 100 150 200 250 300

-60

Simuiated Data

Pulses from Iteration 120000, GRB 105, Channel 1

Probability
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Menu

@® Point estimates: Fogetaboutit!
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A conjugate MLM: Gamma-Poisson
Goal: Learn a flux dist'n from photon counts
Qualitative Quantitative

0 = (a,s) or (u,0)

Population

parameters 7T(0) — Flat(,u, O')
Source p(F,|0) = Gamma(F,|0)
properties

Observed p(n,|F,) = POiS(n,’lE,’Fi)

data

Simulations: N = 60 sources from gamma with (F) = 100 and of = 30;
exposures spanning dynamic range of x16
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Gamma-Poisson population and member estimates

— True
-- ML

-~ Shrunken pts 1
— MLM |

KLD,;, = 0.060 b
KLDg, = 0.179 b
KLDyyy = 0.031 b

True

ML

EB

250
RMSE = 4.30
RMSE = 3.72
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Competing data analysis goals

“Shrunken” member estimates provide improved & reliable
estimate for population member properties

But they are under-dispersed in comparison to the true values —
not optimal for estimating population properties*

No point estimates of member properties are good for all tasks!

We should view data catalogs as providing
descriptions of member likelihood functions,
not “estimates with errors”

*Louis (1984); Eddington noted this in 1940!



Menu

© Population distributions: Multiplying vs. summing
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From likelihoods to distributions

Delta-function model
Suppose all galaxies are at the same (unknown) redshift, £

How to use the member likelihoods to infer £7

6(z; — &)

24 /34



The population parameter is 8 = ¢

p(&,z|D) o« w(¢ H6 &) Li(z)

(QD X 7T H/dz, I_ I I)
OT 46
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Sum of deltas

Now consider a sum of deltas at fixed locations ;, but with

unknown amplitudes f; to be estimated

J10(z — &1)
f20(z — &2)

SES

26
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The population parameters are § = f = {f;} for j =1 to M:

p(f,z|D) o m( H[ﬁé — &)+ hi(zi — &)+ -] li(z)

p(fID) o m( H[fle,- 1) + fali(§2) + -]

A product-of-sums, with sums corresponding to the ¢;(z;) integrals



Product-of-sums:

p(fID) = =(€) H [fli(&1) + RLli(&2) + -]

Gather terms, or use the law of total probability, to get a
sum-of-products representation, summing over partitions w of the
members into sets S; of N; objects assigned to component j:

N!

x| TTa) |- [ IT tem)

€Sy i€Sp

A sum over ways to slice the member likelihoods and assign the
slices to redshift “bins”

The “sum the uncertainties” intuition is sound, if you are careful over
exactly what alternatives you are summing over—assignments of objects
to redshift intervals
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Menu

O Low-D MLMs: Cubature vs. importance sampling
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1-D lower-level MLM marginalization

For a Gaussian member likelihood function and power-law f(z; ),
compute:

/dz,- f(zi;0) Li(z)

Compare normal-kernel importance sampling (i.e., using posterior
samples based on flat interim prior) and Gauss-Hermite quadrature

Normal importance sampling Gauss-Hermit quadrature
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CUDAHM for big-data single-plate MLMs
Tamds Budavari, Brandon Kelly, TL, Jdnos Szalai-Gindl

Density estimation Conditional density Cond’l dens. est’n with
with measurement error estimation classical measurement error

Population
parameters
/
/
/
/
! ! '
¥
Latent object
properties

o @
N

N N

Conditional independence = plates are “embarassingly parallel”:
® Metropolis-with-Gibbs: Sample 8 on CPU, member properties on
GPU using Robust Adaptive Metropolis (RAM)

® Quadrature and cubature rules for 1-D to 3-D member properties
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Menu

@ Functional data analysis: Demographics of light
curves & spectra
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Functional Data Analysis (FDA)

LSST: the greatest ever movie of the Universe
and associated astro-statistical challenges

Zeljko lIvezi¢ (Bill)
Actually the greatest, weirdest time-lapse movie. ..

® Each frame is one color (filter)—colors not synchronized
® Frame rate is highly uneven; large gaps
® Patches of the sky observed differently

® Many dim, noisy sources

Data are multiband, irregularly sampled,asynchronous, light curves;

with heteroskedastic & asymmetric errors; censored
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Functional Data Analysis (FDA)
FDA = statistical methods tailored for learning, classifying,
predicting with populations of functions

Frequentist FDA: Registration, functional PCA, functional mixed
effects, function-on-function regression. . .

Bayesian FDA: Modeling strategies for multilevel models for
functional data (parametric & nonparametric)

10.Ramsay

J.0. Ramsay (%} Giles Hooker
B.W. Silverman 1 Spencer Graves
Second Edition
The Oxford Handbook of
FUNCTIONAL
P DATA ANALYSIS
1997, 2005 2009 2011
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