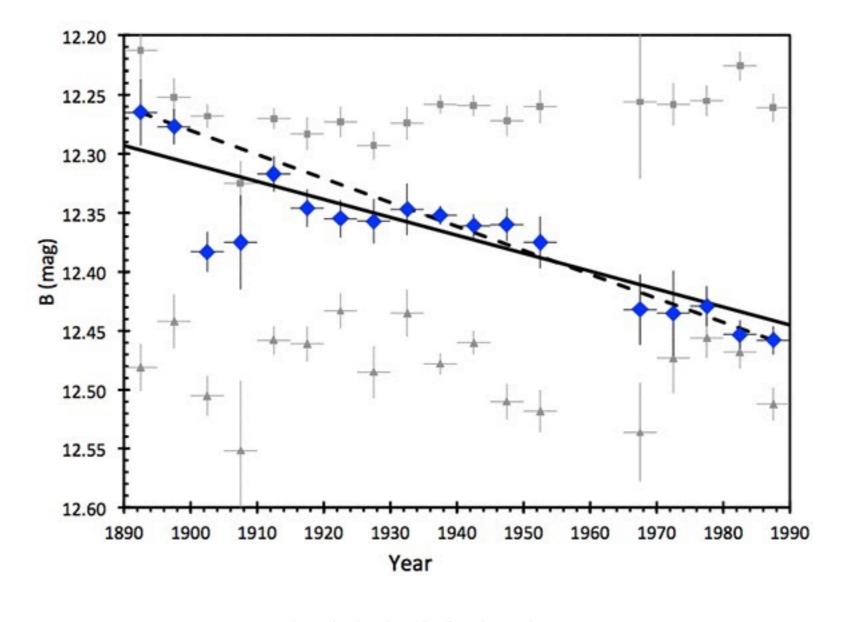
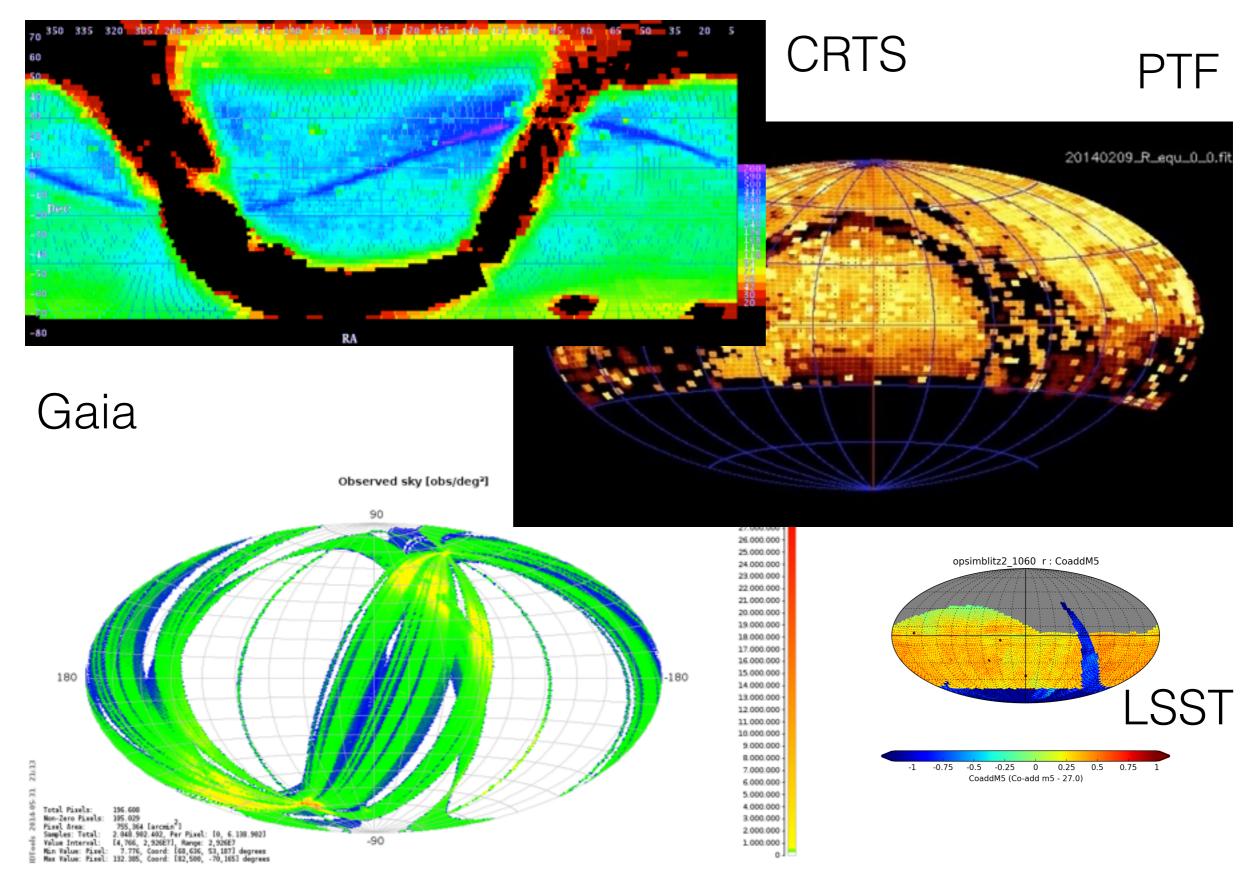
Complete Classification Conundrum



Ashish Mahabal aam@<u>astro.caltech.edu</u> Center for Data-Driven Discovery (CD^3), Caltech Collaborators: CRTS, PTF, LSST, SAMSI, IUCAA ... teams SCMA VI, CMU, 20160607

Sky Maps of a few (optical) surveys



Stars, Milky Way, and Local Volume

Statistics and Informatics

Dark energy

Galaxies

STRONG LENSING

Active Galactic Nuclei

Transients and Variable Stars

Large Scale Structure/Baryon Oscillation

Stars, Milky Way, and Local Volume

Statistics and Informatics

Dark energy

Galaxies

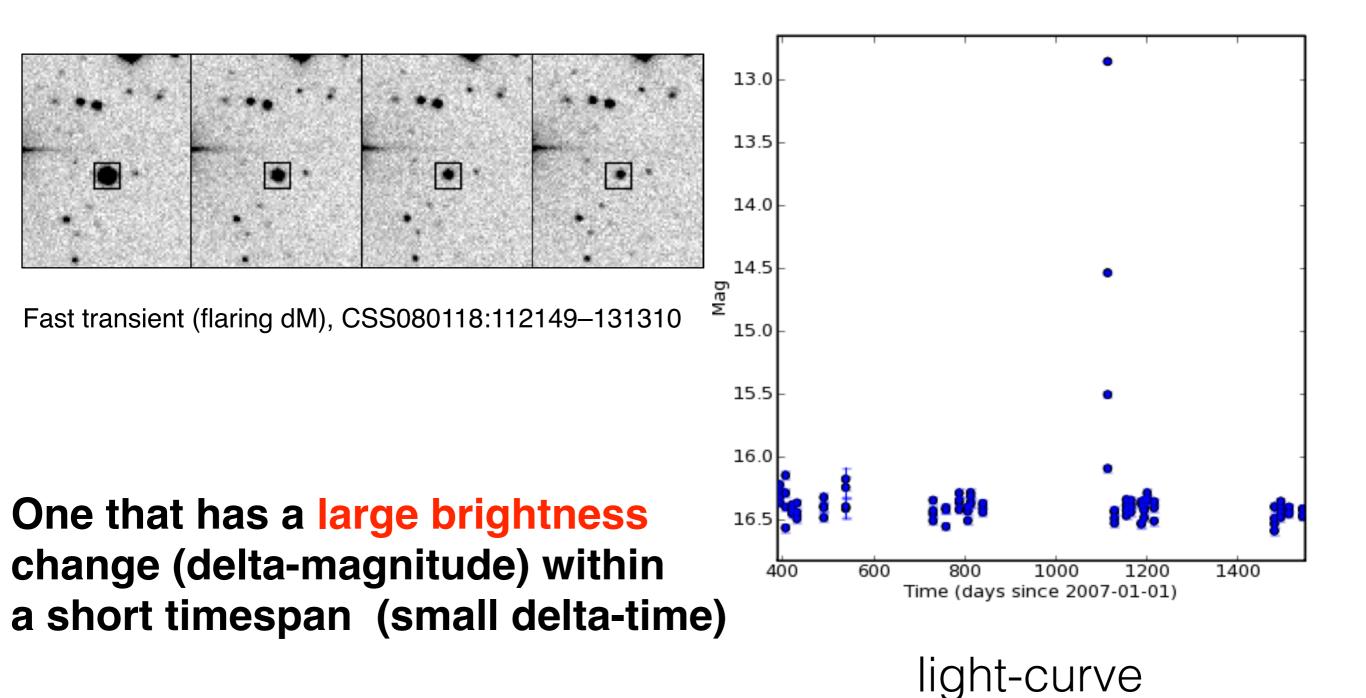
STRONG LENSING

Active Galactic Nuclei

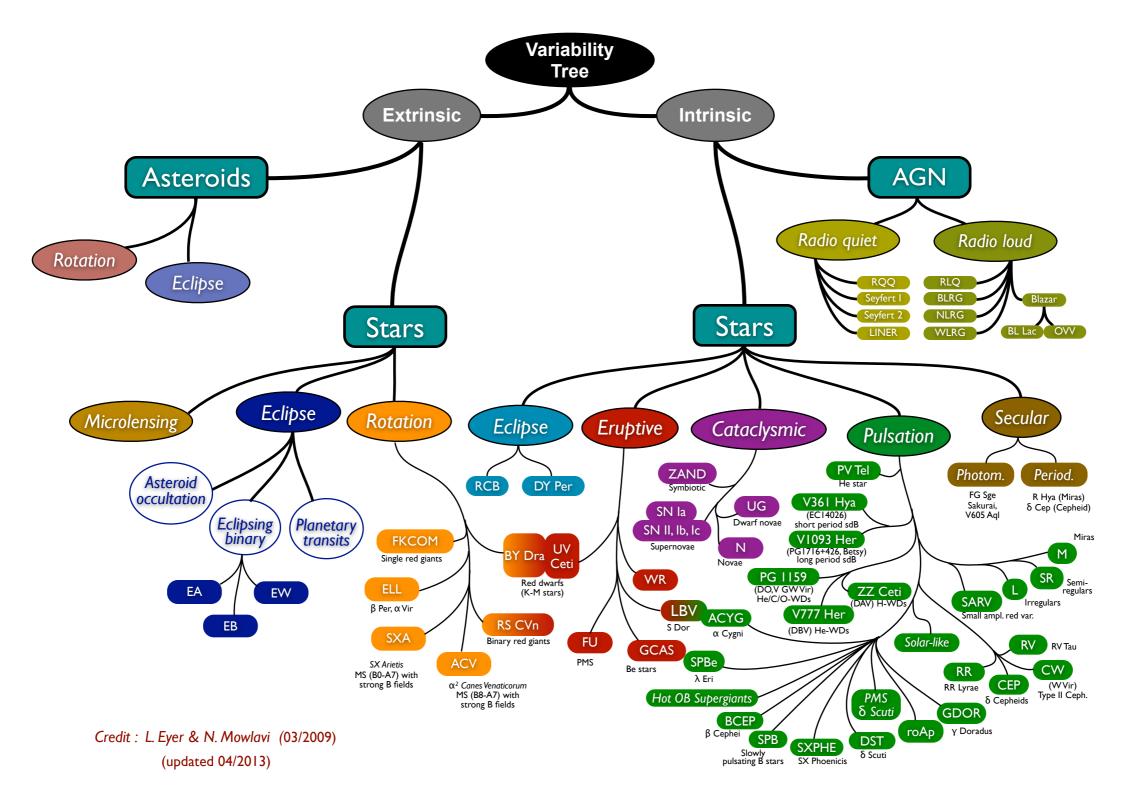
Transients and Variable Stars

Large Scale Structure/Baryon Oscillation

What is a transient?

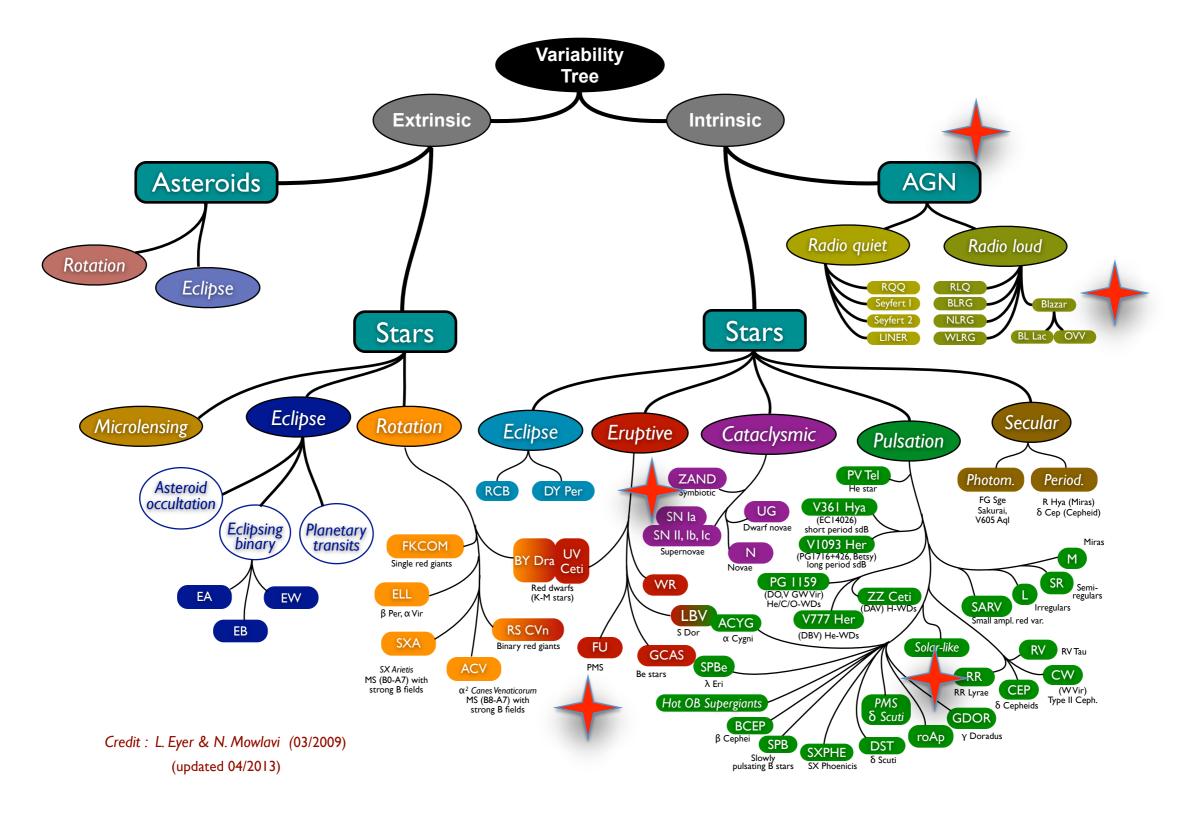


Challenge 1: Characterize/Classify as much with as little data as possible



Despite the heterogeneity, gaps, heteroskedasticity

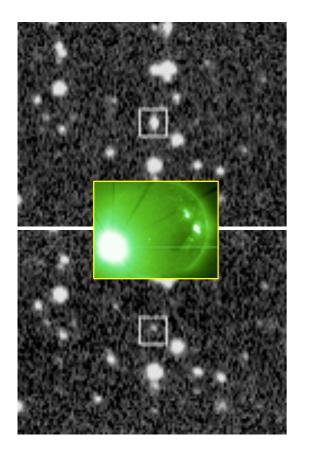
Challenge 1: Characterize/Classify as much with as little data as possible



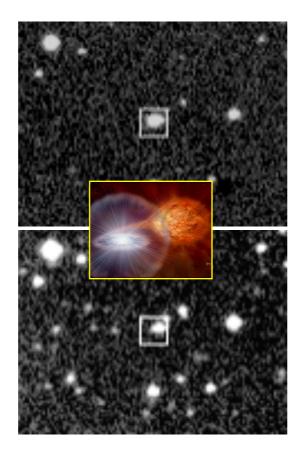
No transient left behind

Example CRTS Transients

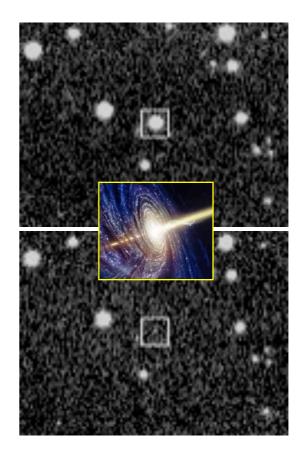
CSS090429:135125-075714 Flare star



CSS090429:101546+033311 Dwarf Nova

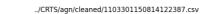


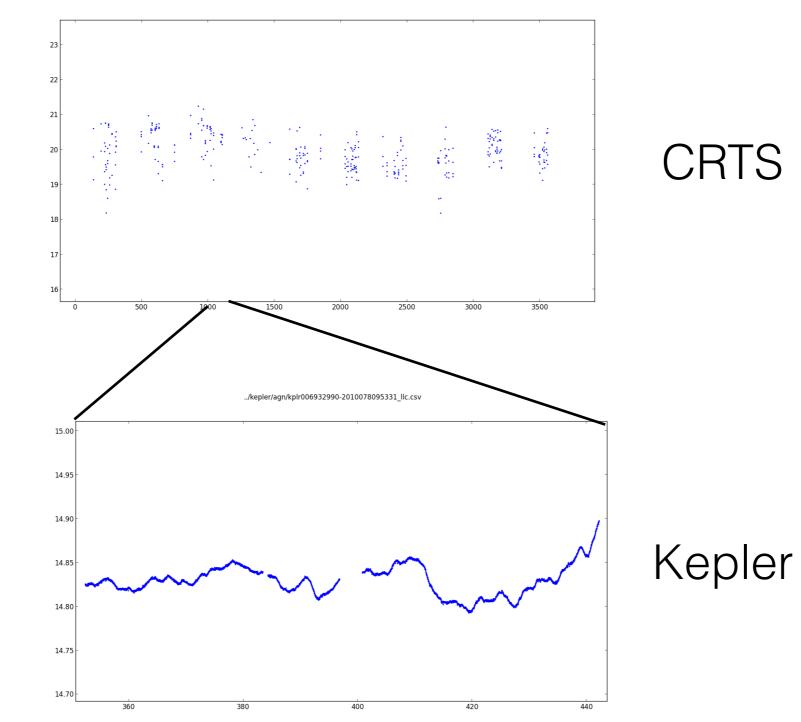
CSS090426:074240+544425 Blazar, 2EG J0744+5438

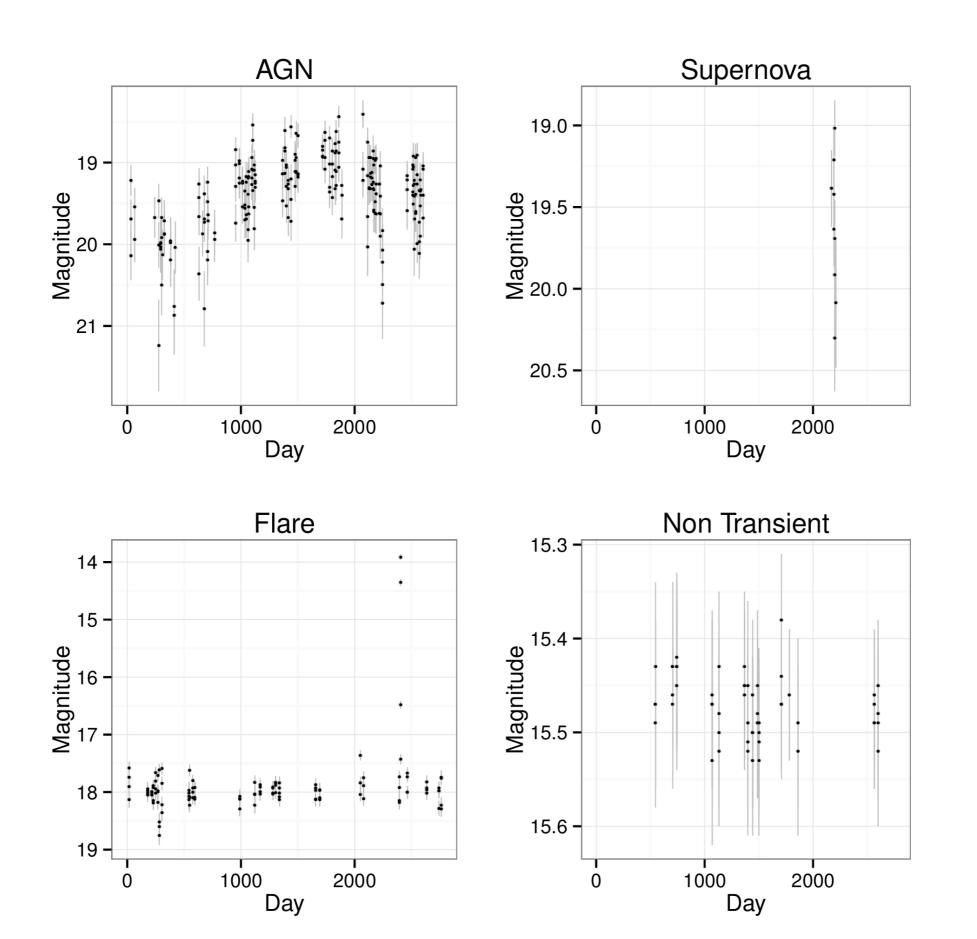


Different phenomena look the same!

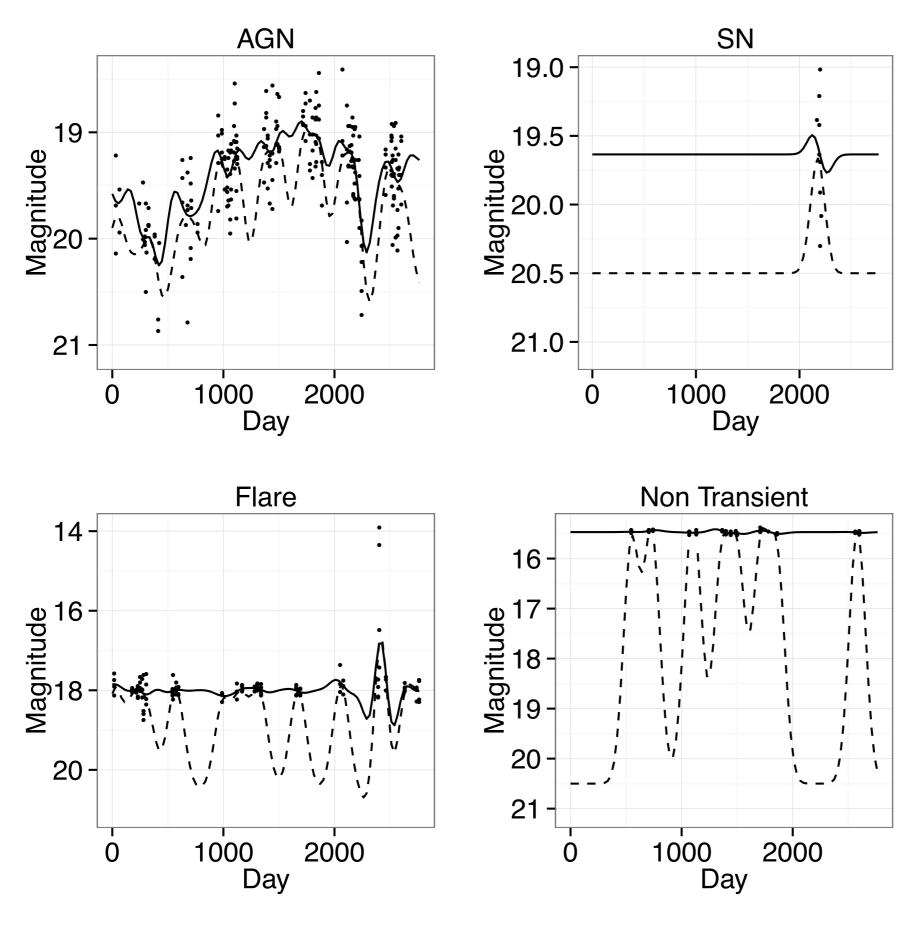
AGN Variability - different perspectives







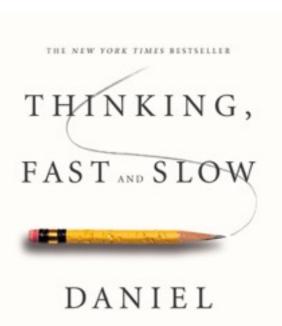
Truncation and Censoring



Faraway, Mahabal et al. 2015

What You See Is All There Is (WYSIATI)

When regressing base rates should not be forgotten.

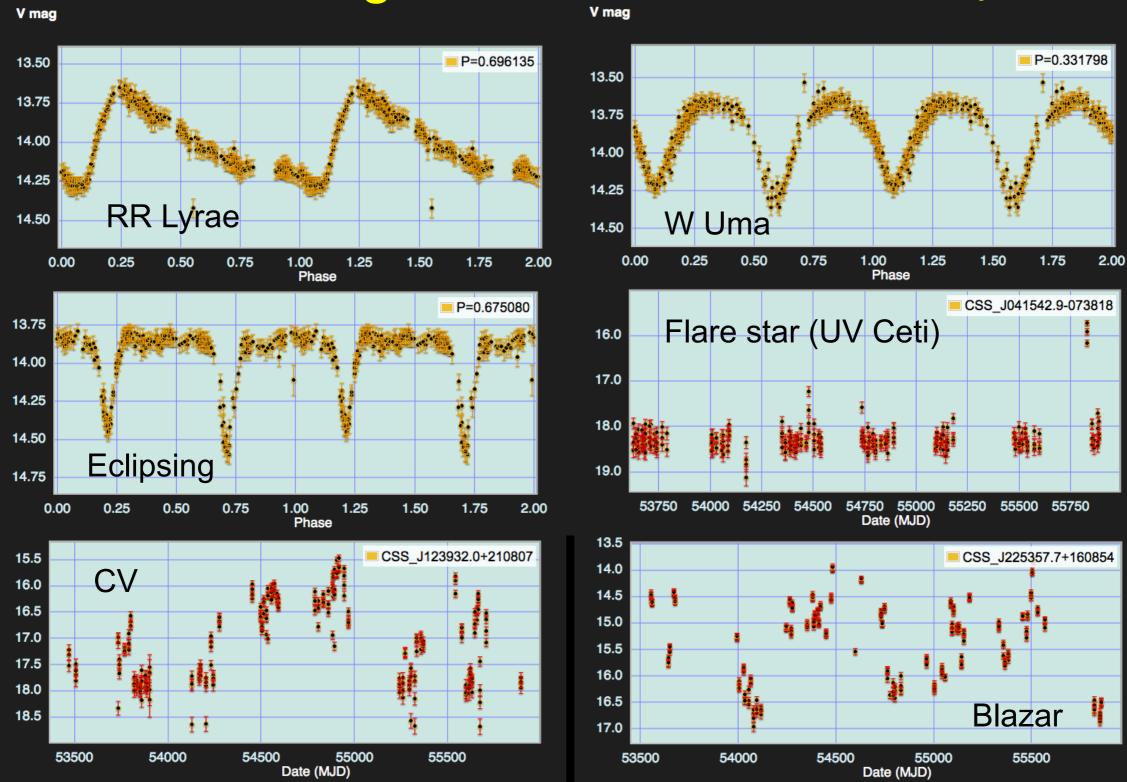


KAHNEMAN

WINNER OF THE NOBEL PRIZE IN ECONOMICS

"[A] masterpiece . . . This is one of the greatest and most engaging collections of insights into the human mind I have read." ---w1LLEAM RAYTERLY, Financial Times

500 Million Light Curves with ~ 10¹¹ data points



CRTS PIs Djorgovski, Drake

Challenge 2: Only a small fraction are rare - find/characterize them early

CRTS 10+ year status

Telescope	All OTs	Supernovae	Cataclysmic Variables	Blazars	Asteriods/Flares	CV or SN	AGN	Other
CSS	5353	1669	964	265	366	562	640	977
MLS	5879	886	119	109	299	890	2787	1004
SSS	700	105	256	18	13	109	33	171
SNhunt	197	197	0	0	0	0	0	0
Total	12129	2857	1339	392	678	1561	3460	2152

Current Status: Few tens of transients per night Future (LSST): 10⁶ - 10⁷ per night; 10⁴ per minute That is why we need automatic classification algorithms

Variability on huge range of timescales

Class	Timescale	Amplitude (Δmags)	
WD Pulsations	4-10 min	0.01 - 0.1	
AM CVn (orbital period)	10-65 min	0.1 - 1	
WD spin (int. polars)	20-60 min	0.02 - 0.4	
AM CVn outbursts	I-5 days	2 - 5	
Dwarf Novae outburst	4 days - 30 years	2 - 8	
Symbiotic (outburst)	weeks-months	I - 3	
Novae-like high/low	days-years	2 - 5	
Recurrent Novae	10-20 year	6 - 11	
Novae	10 ³ -10 ⁴ yr	7 - 15	

Slide from Lucianne Walkowicz

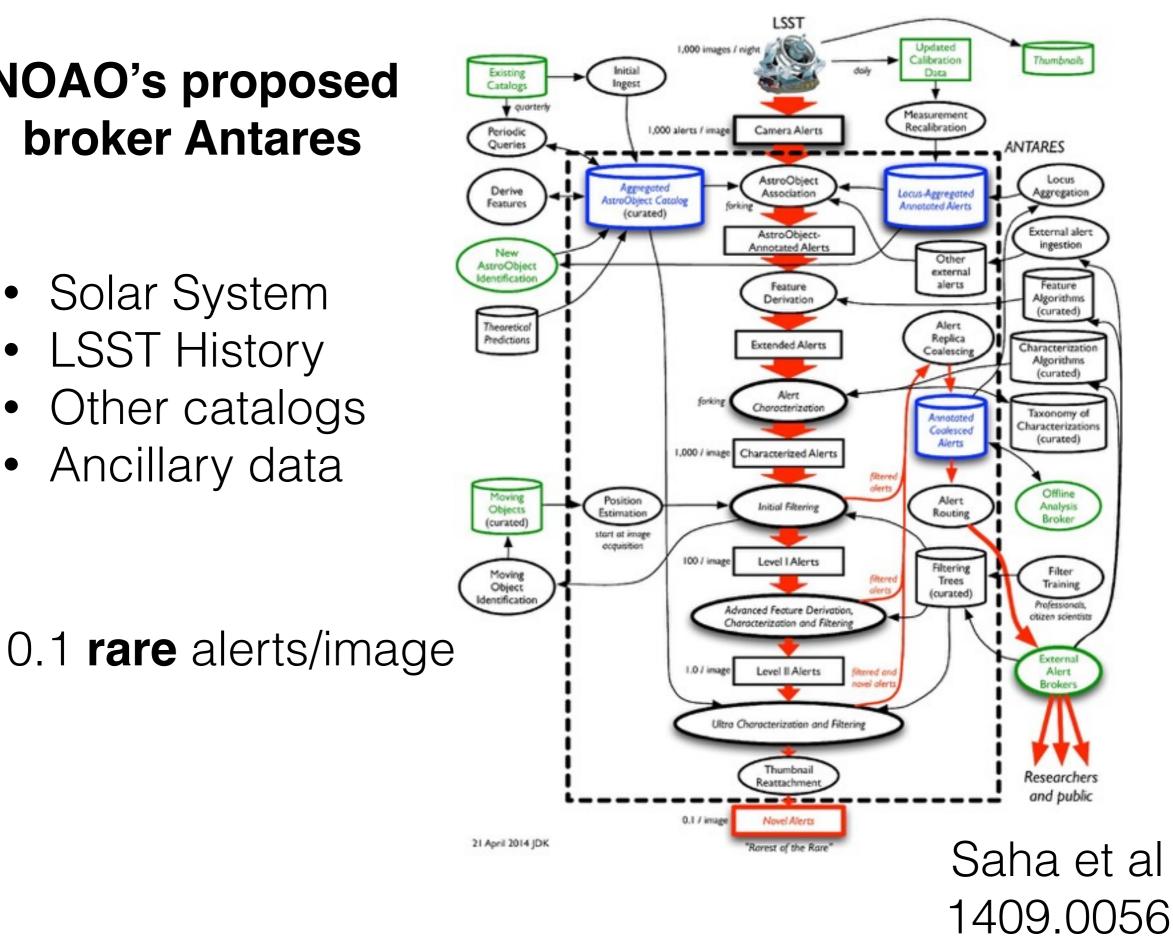
Expected Rate of Transients

Class	Mag	t (days)	Universal Rate	LSST Rate
Luminous SNe	-1923	50 - 400	10 ⁻⁷ Mpc ⁻³ yr ⁻¹	20000
Orphan Afterglows SHB	-1418	5 -15	3 x10 ⁻⁷⁹ Mpc ⁻³ yr ⁻¹	~10 - 100
Orphan Afterglows LSB	-2226	2 - 15	3 x 10 ⁻¹⁰¹¹ Mpc ⁻³ yr ⁻¹	1000
On-axis GRB afterglows	37	I - 15	10 ⁻¹¹ Mpc ⁻³ yr ⁻¹	~50
Tidal Disruption Flares	-1519	30 - 350	10 ⁻⁶ Mpc ⁻³ yr ⁻¹	6000
Luminous Red Novae	-913	20 - 60	10 ⁻¹³ yr ⁻¹ Lsun ⁻¹	80 - 3400
Fallback SNe	-421	0.5 - 2	<5 x 10 ⁻⁶ Mpc ⁻³ yr ⁻¹	< 800
SNe la	-1719.5	30 - 70	3 x 10 ⁻⁵ Mpc ⁻³ yr ⁻¹	200000
SNe II	-1520	20 - 300	(38) x 10 ⁻⁵ Mpc ⁻³ yr ⁻¹	100000

Table adapted from Rau et al. 2009 by Lucianne Walkowicz

NOAO's proposed **broker Antares**

- Solar System
- LSST History
- Other catalogs \bullet
- Ancillary data



NOAO's proposed **broker Antares**

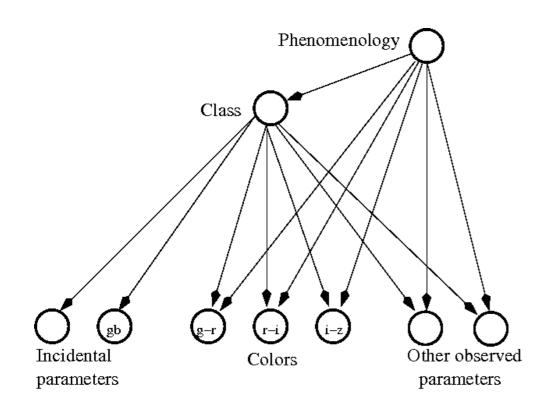
- Solar System
- LSST History
- Other catalogs ${\color{black}\bullet}$

2017 workshop

• Ancillary data

LSST Updated 1,000 images / night Thumbnoils Calibration Initial doily Existing Data Ingest Catalogs + quarterly Measurement Recalibration 1,000 alerts / image Camera Alerts Periodic Queries ANTARES AstroObject Locus Derive Aggregated Locus Appregated Aggregation Association AstroObject Catalog Features Annotated Alerts (curated) External alert AstroObjectingestion Annotated Alerts New Other AstroObject external dentificatio alerts Feature Feature Algorithms Derivation (curated) Alert Theoretico Predictions Replica Extended Alerts Characterization Coalescin Algorithms (curated) Alert Characterization Taxonomy of Annatated Characterizations Coolesced (curated) Alerts 1,000 / image Characterized Alerts Offline Position Alert Analysis Initial Filtering Objects Estimation Routing Broker (curated) start at image ocquisition 100 / image Level | Alerts Filtering Filter Moving Trees Training Object (curated) dentification Professionals Advanced Feature Derivation, citizen scientists Characterization and Filtering 0.1 rare alerts/image External 1.0 / image Level II Alerts Verred and Alert Brokers ei olert Ultra Characterization and Filterin Thumbnail Researchers Reattachment and public 0.1 / image 21 April 2014 JDK 2016 LSST AHM Saha et al orest of the 1409.0056

Bayesian Networks



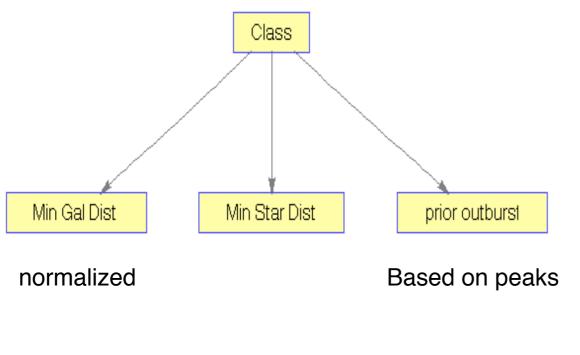
Search space growth hyperexponential

n	G(n)
1	1
2	3
3	25
4	543
5	29,281
6	3,781,503
7	1.1 x 10^9
8	7.8 x 10^11
9	1.2 x 10^15
10	4.2 x 10^18

Very broadly speaking 5 flavors of BNs possible

- Naïve
- Tree Augmented Network (TAN)
- Constructed (semantics, expert knowledge etc. based)
- Single winner from several naïve
- Fully learned from data

SNe/non-SNe BN



$$prior outburst = \frac{1}{t_{span}} \cdot \left(\frac{\sum_{i} w_{i}(p_{i} - p_{m})^{2}}{N}\right)^{1/2}$$

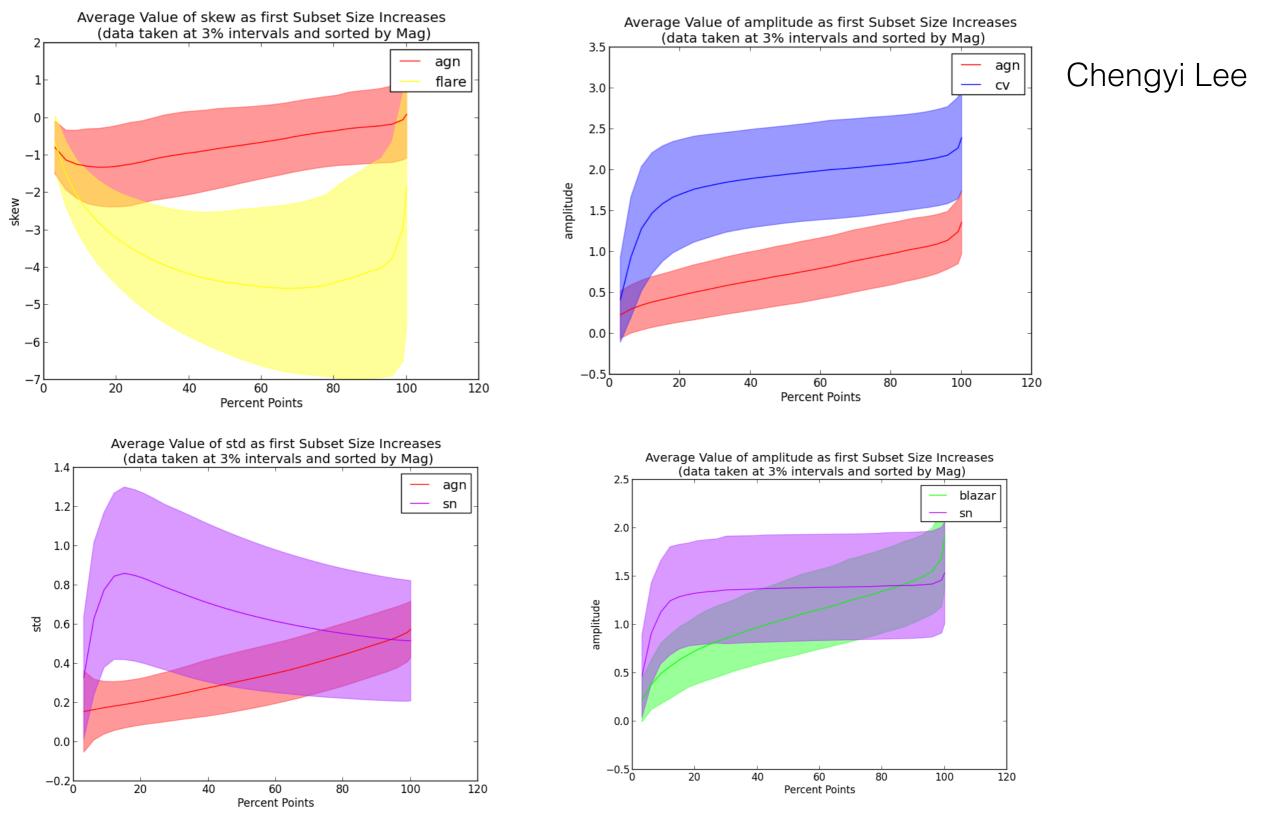
$$80-90\% \text{ completeness}$$

$$Only archival information$$

information

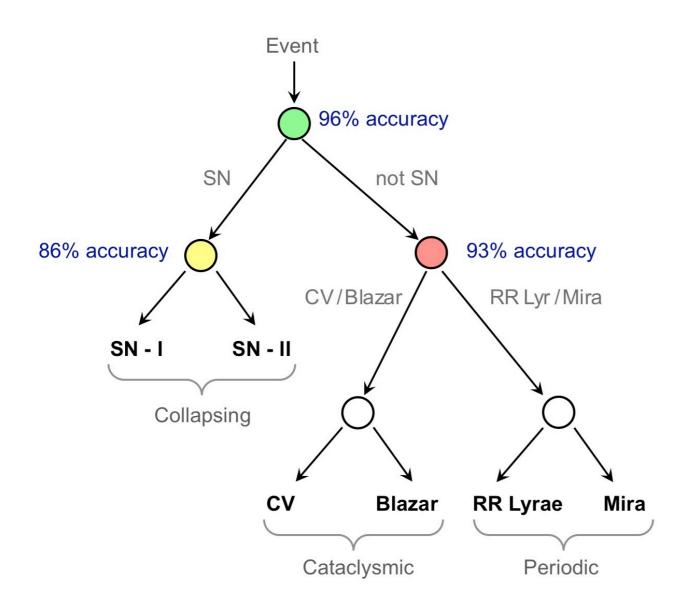
Classifier	Completeness nonSN	Completeness SN	Contamination nonSN	Contamination SN
3 param incomplete	0.792	0.797	0.139	0.293
3 param complete	0.827	0.917	0.078	0.181
2 param complete	0.807	0.866	0.111	0.228

Discriminating features

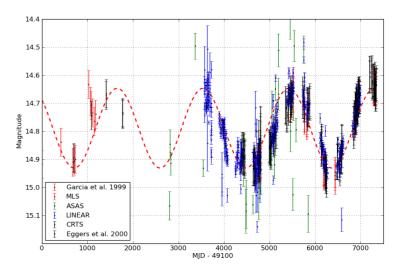


You can not step into the same river twice.

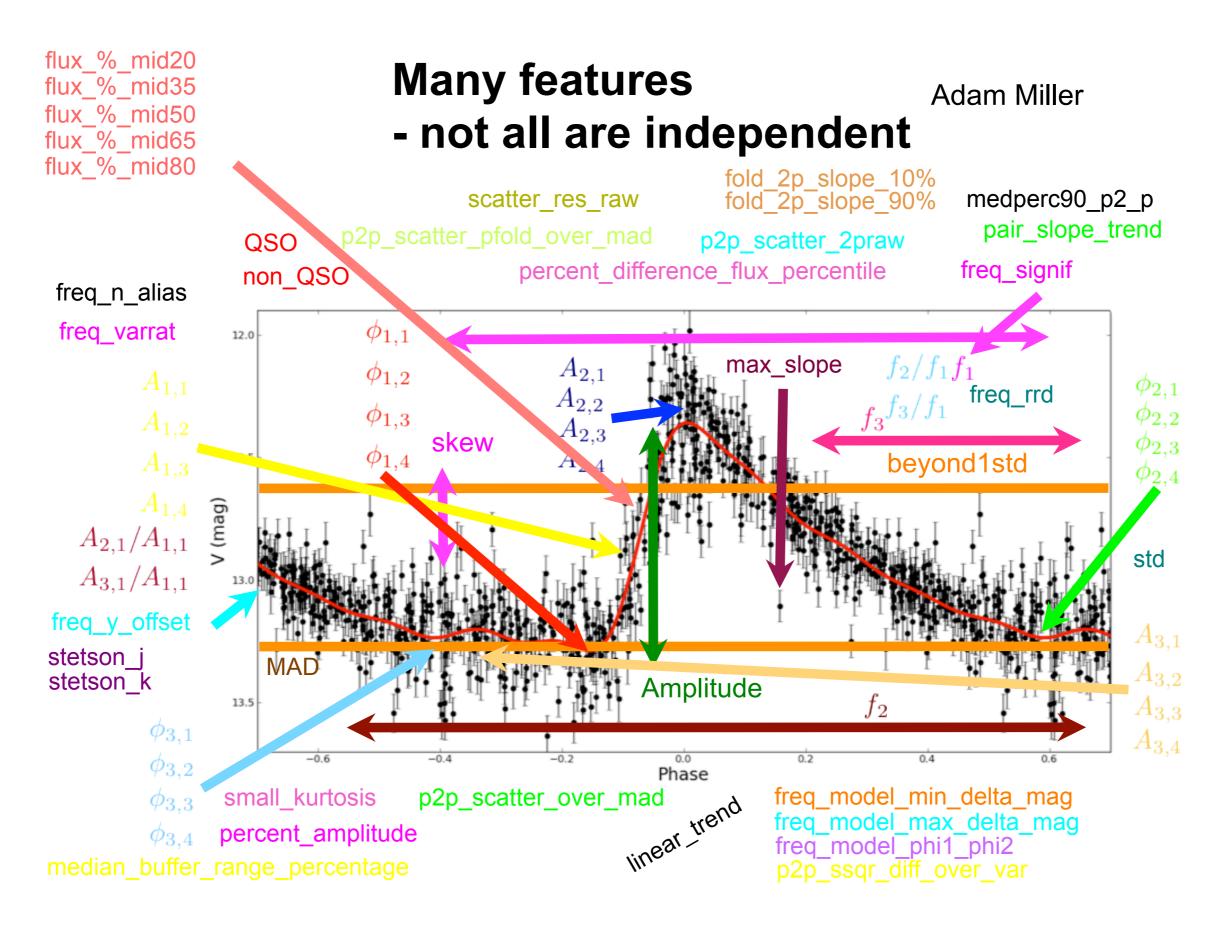
Hierarchical approach



Archival search



Binary Blackholes Graham et al. 2015 CARMA/Wavelets



Resort to dimensionality reduction

Challenge 3: A variety of parameters - choose judiciously

Discovery; Contextual; Follow-up; Prior Classification ...

Whole curve measures

Median magnitude (mag); mean of absolute differences of successive observed magnitude; the maximum difference magnitudes

Fitted curve measures

Scaled total variation scaled by number of days of observation; range of fitted curve; maximum derivative in the fitted curve

Residual from fit measures

The maximum studentized residual; SD of residuals; skewness of residuals; Shapiro-Wilk statistic of residuals

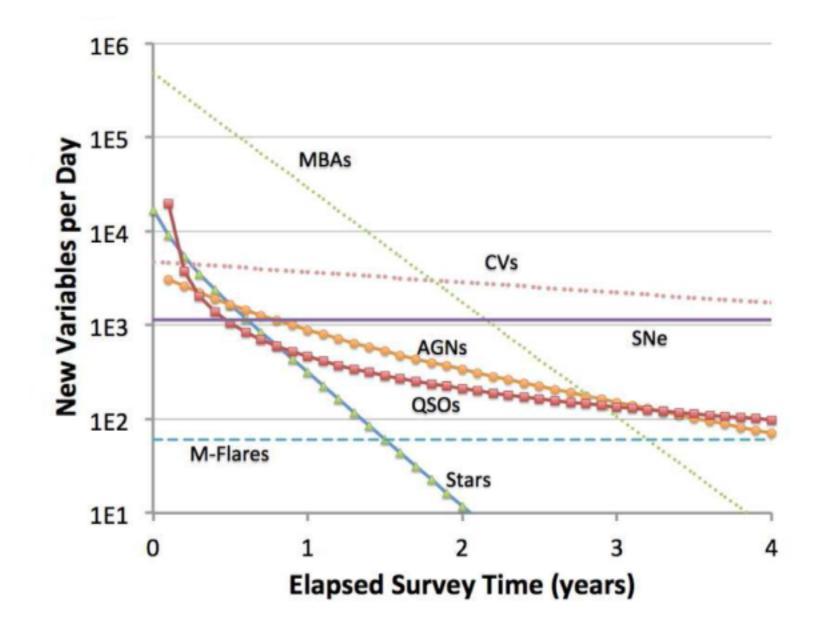
Cluster measures

Fit the means within the groups (up to 4 measurements); and then take the logged SD of the residuals from this fit; the max absolute residuals from this fit; total variation of curve based on group means scaled by range of observation

Challenge 4: real-time computation required - find ways to make that happen

Recomputation of features

Updating priors

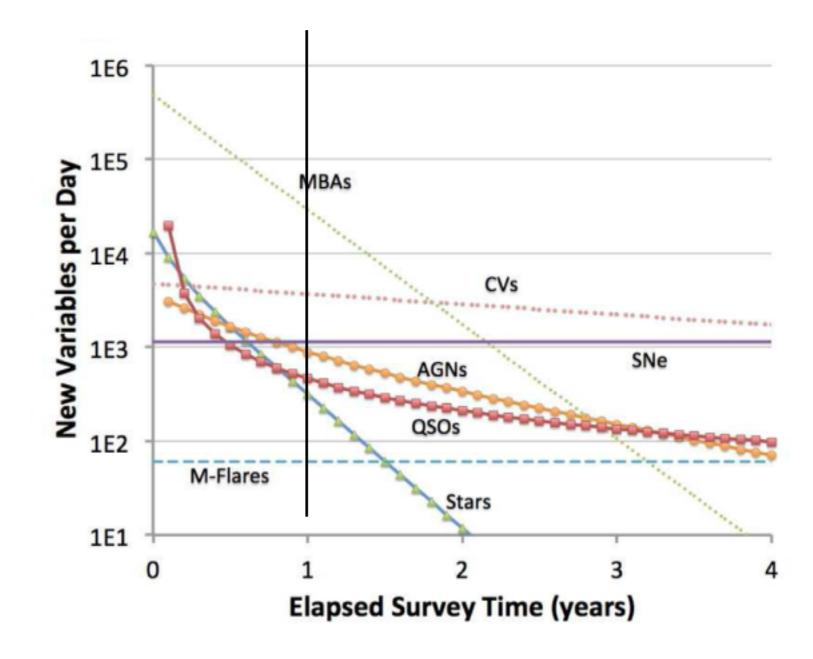


Ridgeway et al., arXiv: 1409.3265

Challenge 4: real-time computation required - find ways to make that happen

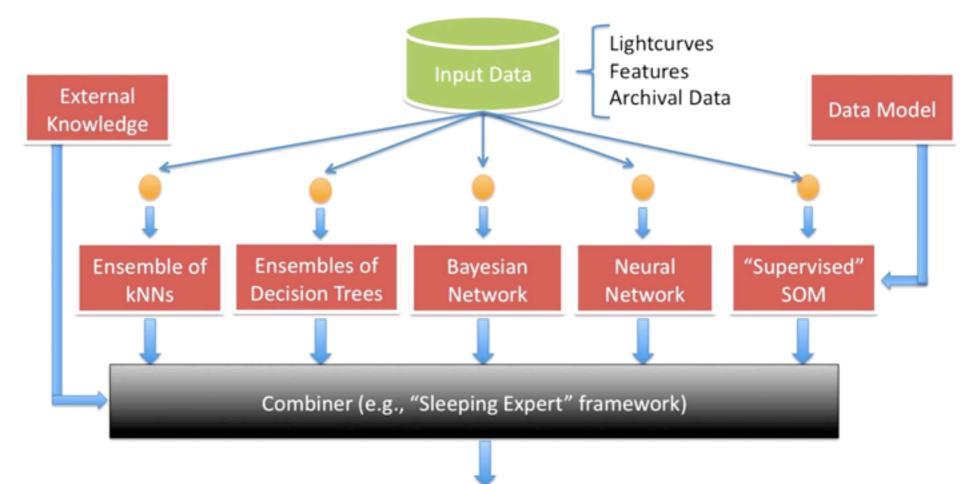
Recomputation of features

Updating priors



Ridgeway et al., arXiv: 1409.3265

Challenge 5: Metaclassification - combining diverse classifiers optimally

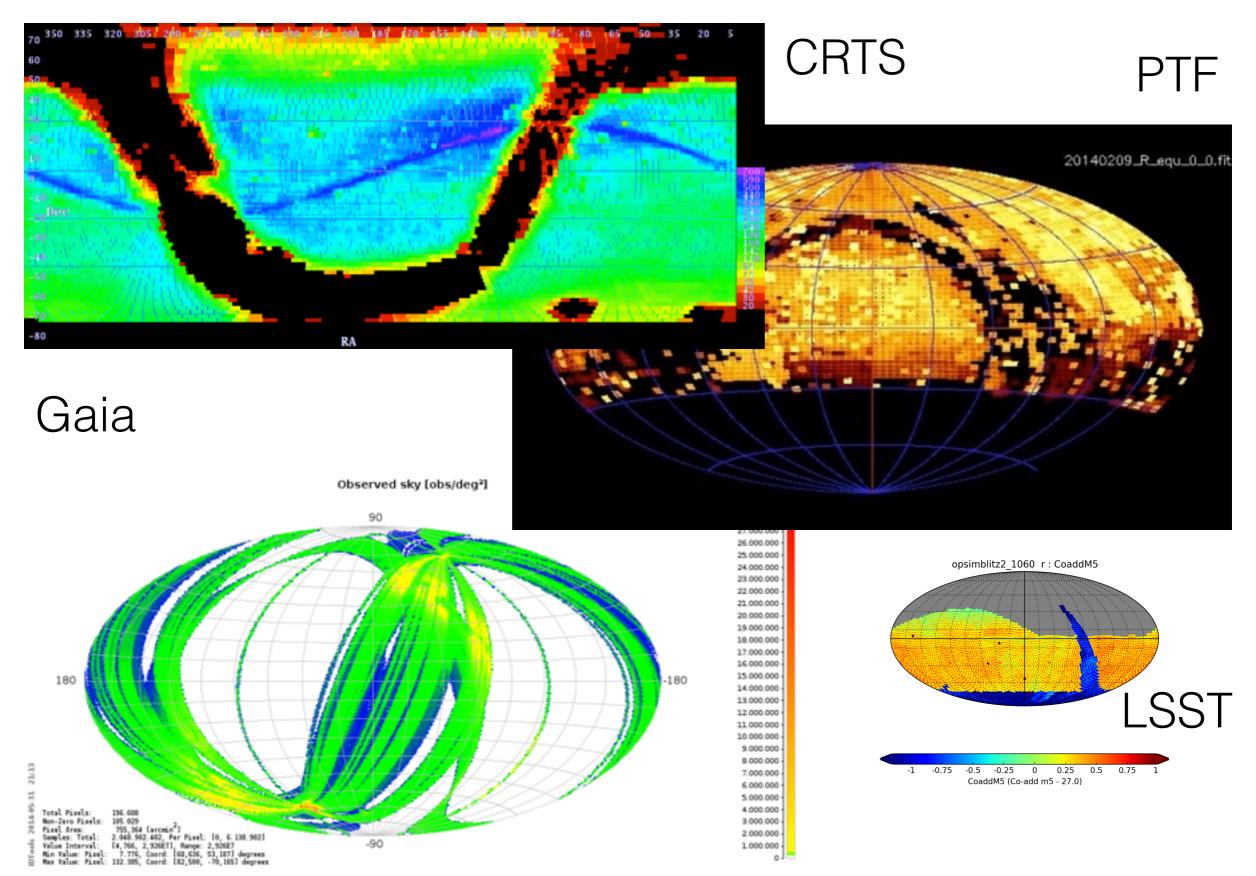


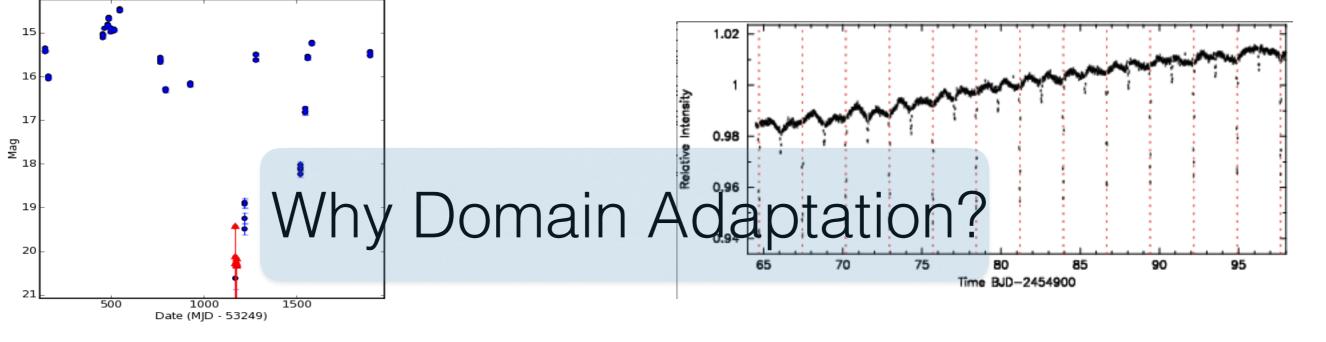
Final Classification

As varied classifiers are used for parts of the classification tree combing their outputs in an optimal way becomes crucial

Mahabal, Donalek

Sky Maps of a few surveys

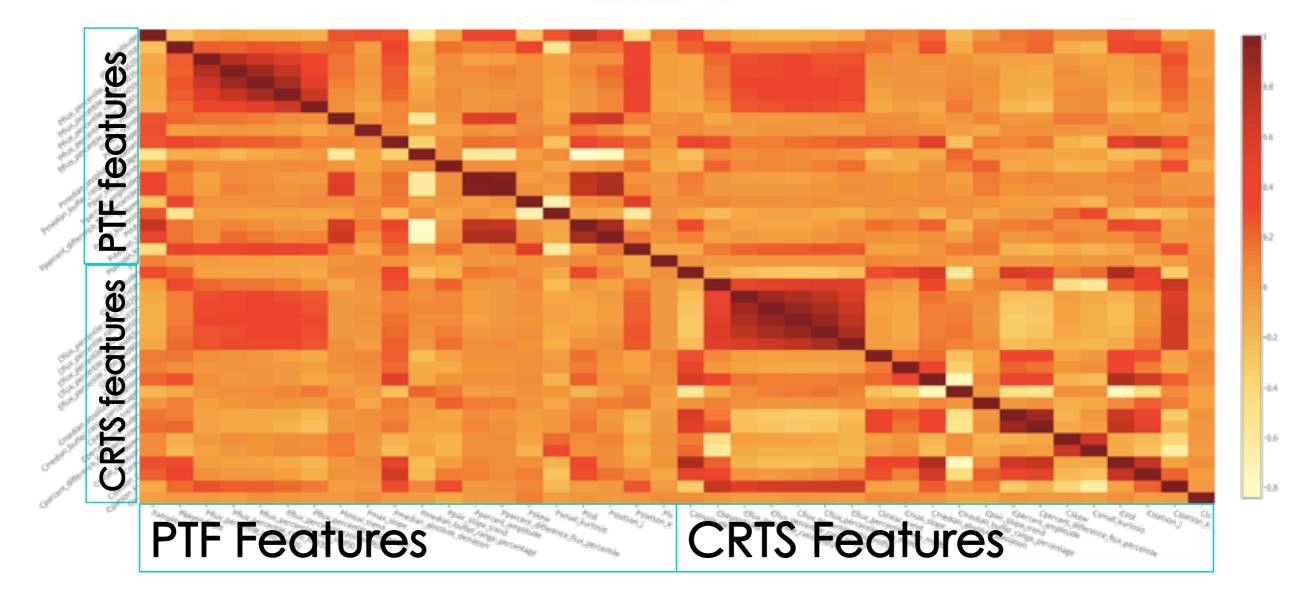




- Surveys differ in depth (aperture), filters, cadence
- Same (type of) objects produce different statistical features (skew, median absolute deviation etc.)
- Learning tends to be done on each survey separately leading to unnecessary delays
- DA helps build on the otherwise untapped intersurvey synergy (think DASCH -> CRTS/ZTF/ Kepler -> LSST) Jingling Li, S Vaijanapurkar, B Bue

Feature Correlations

Feature correlation PTF vs CRTF



KIC 8462852 (aka Tabby's star aka WTF star)

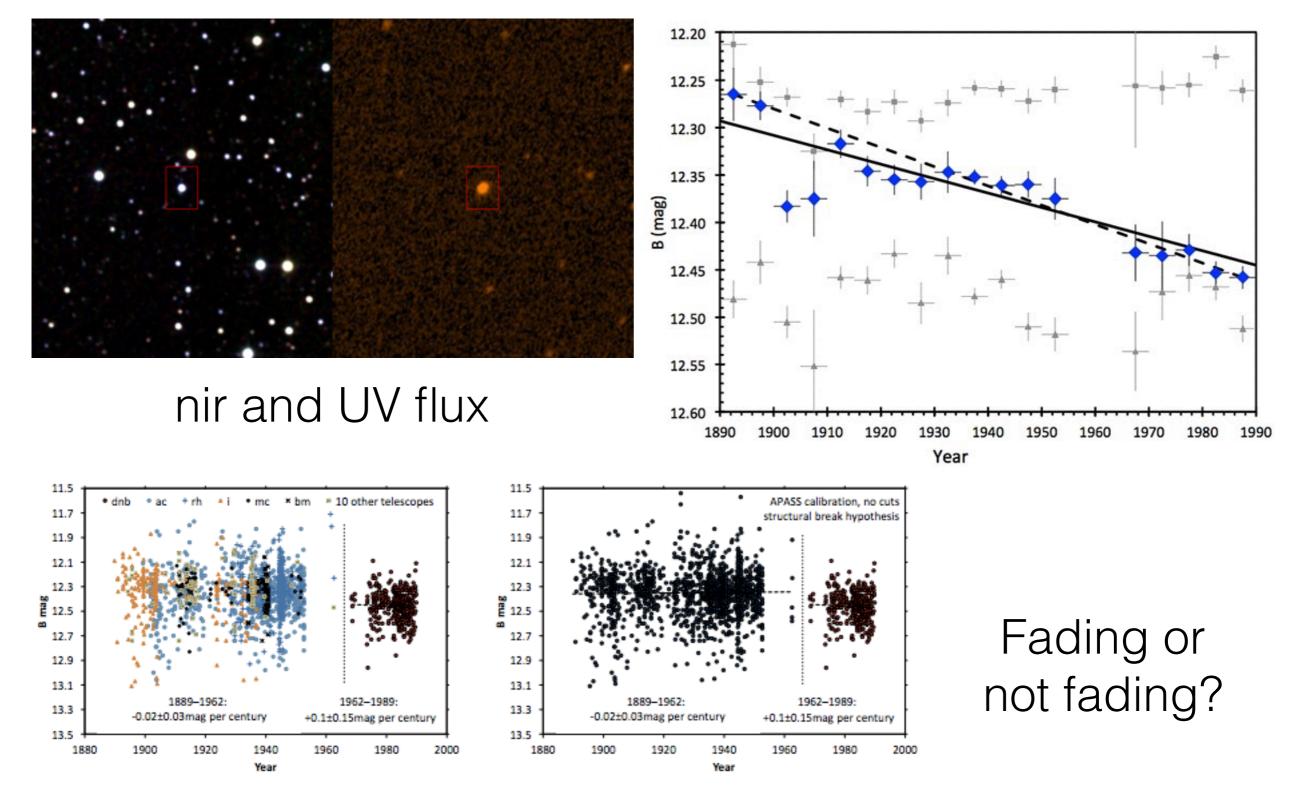
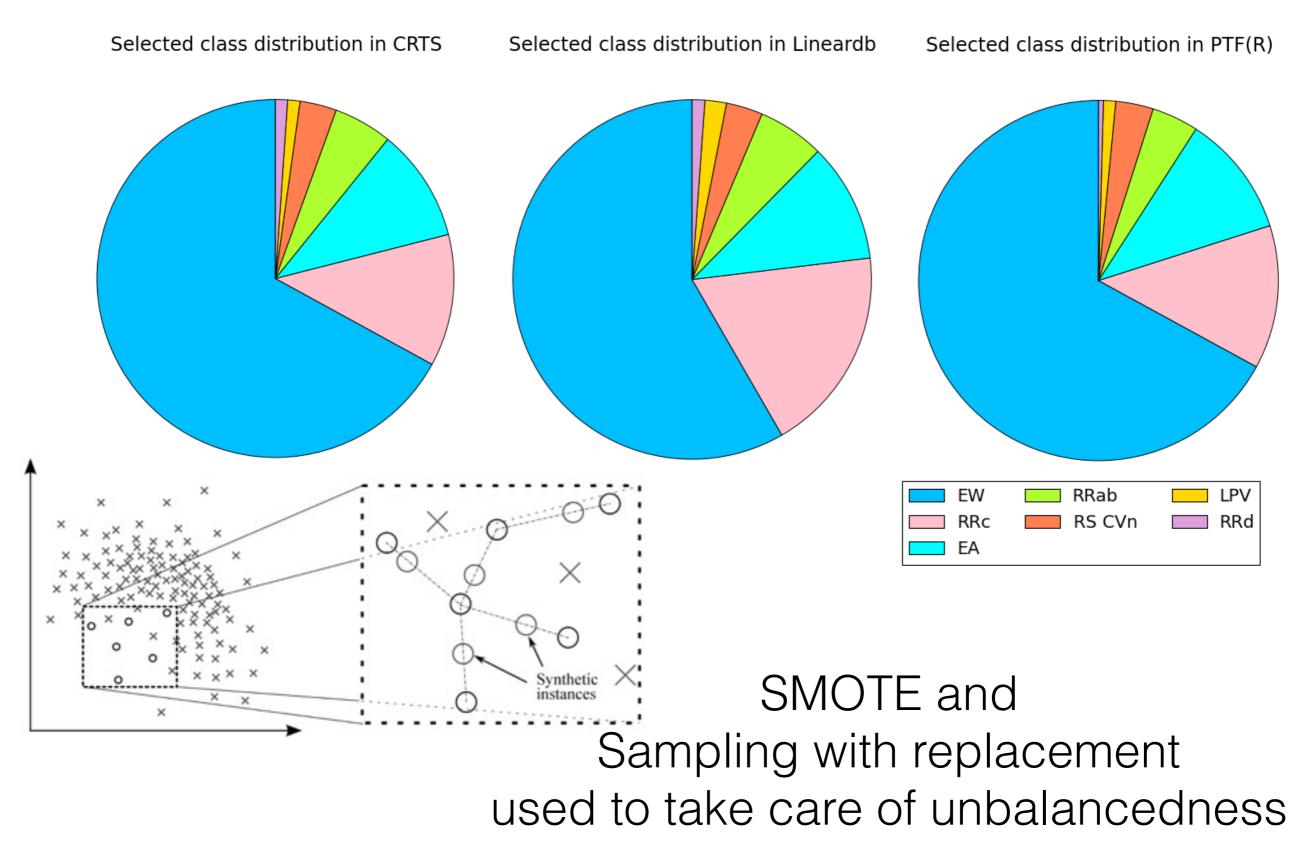
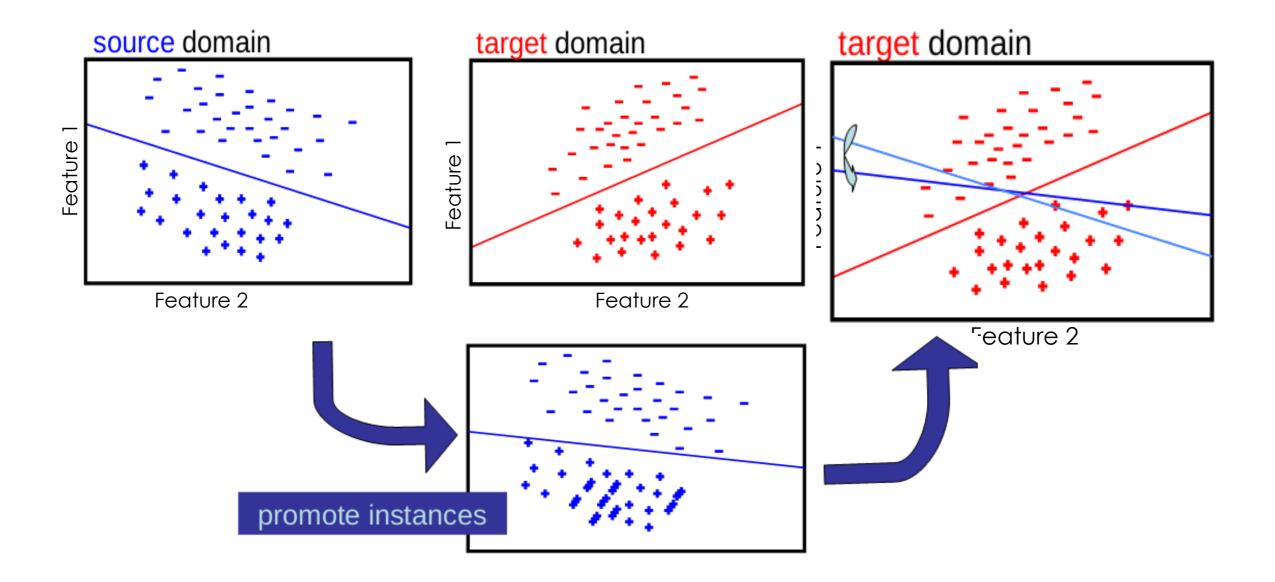


FIG. 3.— Hypothesis of a structural break. Left: The data before 1962 comes from 16 different telescopes, while the data after 1962 (red symbols) comes from only one telescope and shows an offset. Right: Linear regressions for both segments separately indicate constant luminosity within the errors. We hypothesize that the structural break is due to a different technology used after 1962 in "dnb" data, e.g. due to a different emulsion.

50K Variables from CRTS Drake et al. 2014

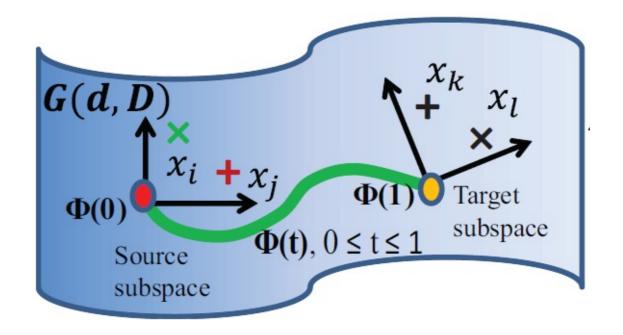


If you had just two features



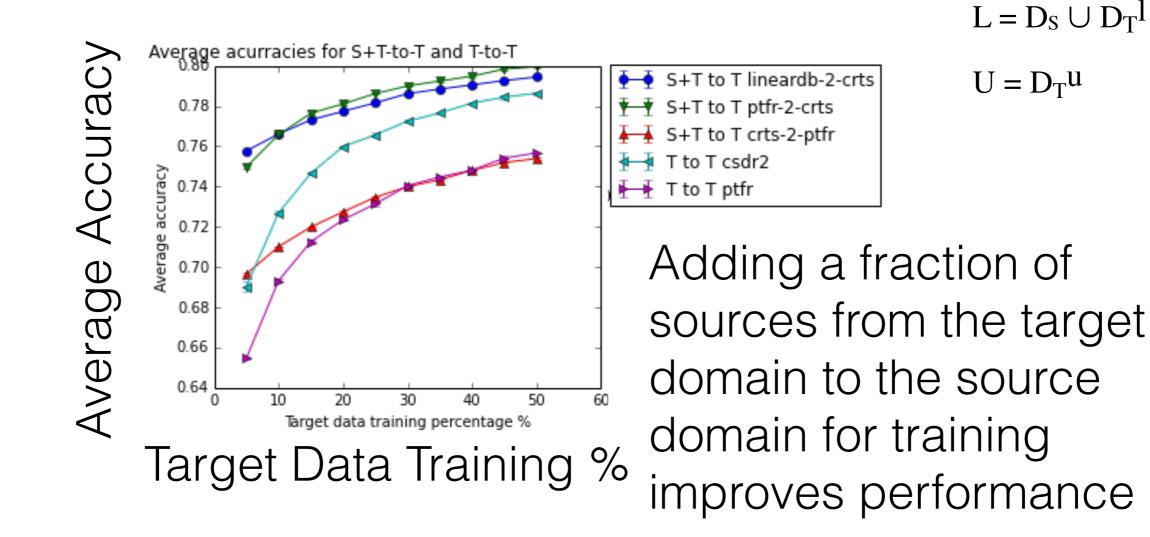
Geodesik Flow Kernel

- Integrate flow of subspace: S to T
- Kernel incapsulates incremental changes between subspaces
- Kernel converts domain specific features into invariant ones (Gong et al. 2012)



Co-Domain Adaptation

- Slow adaptation from S to T
- Add best target objects in each round
- Elect shared S and T subsets from training and unlabelled data (Chen et al. 2011)



Summary of challenges

- \cdot Characterize/Classify as much with as little data as possible
- \cdot Only a small fraction are rare find/characterize them early
- A variety of parameters choose judiciously
- \cdot Real-time computation is required find ways to make that happen
- Metaclassification combining diverse classifiers optimally

Summary of challenges

- \cdot Characterize/Classify as much with as little data as possible
- \cdot Only a small fraction are rare find/characterize them early
- A variety of parameters choose judiciously
- \cdot Real-time computation is required find ways to make that happen
- Metaclassification combining diverse classifiers optimally

These challenges involve:

- Making sense of unparalleled volumes of structured and unstructured data in real-time, and
- Teaching machines how humans think by understanding pattern recognition when handling diverse types of data sources

Summary of challenges

- \cdot Characterize/Classify as much with as little data as possible
- \cdot Only a small fraction are rare find/characterize them early
- A variety of parameters choose judiciously
- \cdot Real-time computation is required find ways to make that happen
- Metaclassification combining diverse classifiers optimally

These challenges involve:

- Making sense of unparalleled volumes of structured and unstructured data in real-time, and
- Teaching machines how humans think by understanding pattern recognition when handling diverse types of data sources

Better tools to make sense of very sparse data and Streamlined workflows