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Statistical challenges for the 
future of weak lensing cosmology	



Gravitational lensing	

Strong:	
multiple images	

Weak: slight shape distortion	
 and magnification	

Deflection of light by all 
gravitational mass, 	

including dark matter!	
	



Weak lensing (exaggerated)	

Coherent shape-shape (shear-shear) alignments	
OR	

Coherent foreground position-background shape alignments	



Why should you care	
about weak lensing?	

Structure growth!	 Dark matter and	
dark energy!	

ESA/Planck	

Theory of gravity!	 Galaxy-dark 
matter 

connection!	



Weak lensing �
with large surveys	

Image credit: LSST science book	

Starting in 2003:
 shear-shear 	

(cosmic shear) 	
got lots of	
attention	



2d (2+1d?) galaxy	
density field	

3d galaxy density + 	
peculiar velocity field	

Lensing 	
shear	

Lensing magnification	

Cosmic microwave background	



Why do we want �
that other stuff?	

It’s all about the 
systematics	

	

	

Theoretical:	
•  Intrinsic alignments	
•  Baryonic effects	
•  …	

Observational:	
•  Shear estimation	
•  Photometric redshifts	
•  …	



Example (schematically)	

1.  shear-shear	

2. OTHER-shear	

3. OTHER-OTHER	

If a systematic is in shear, 
but not OTHER ➯	

use the combination to 	
marginalize over the 	

systematic	



Example (schematically)	

1.  shear-shear	

2. OTHER-shear	

3. OTHER-OTHER	

•  Systematics: theoretical or observational	
•  OTHER: galaxy position is a popular one	
(the default WL cosmology analysis in future?)	

If a systematic is in shear, 
but not OTHER ➯	

use the combination to 	
marginalize over the 	

systematic	



A cosmic shear 
alternative / 

consistency check?	



Connection to the 
matter field	

•   shear-shear	

•  Galaxy-shear	

•  Galaxy-galaxy	

Matter-matter 	
correlations	

Galaxy-matter 	

Cross-correlation 
coefficient between 

galaxies, matter: 
generically goes to 1 on 

large scales	



Why?	

• We often know lens redshifts quite well for 
massive objects (lots of cosmological info)	

•  Use of real-space separation (not angle) 
makes it easier to marginalize over small 
scales that we cannot easily model	

•  Some shear systematics vanish in cross-
correlation, not auto-correlation	



Proof of concept	
•  RM+13 demonstrated 

method in SDSS (too 
shallow for cosmic shear)	

•  Constraints on dark 
energy were competitive 
with cosmic shear in 
other datasets	

•  Updated analysis in prep; 
Singh et al 2016	
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Figure 19. 2D contour plot for wCDM fits without the assumption of flatness. Line and contour styles are as in Fig. 15.

lensing analyses, particularly cosmic shear. First, we com-
pare against those from the COSMOS survey, including the
original analysis from Massey et al. (2007) and a re-analysis
in Schrabback et al. (2010). The results from Massey
et al. (2007) used a 3D analysis to infer σ8(Ωm/0.3)0.44 =
0.866+0.085

−0.068 (68 per cent CL, stat. + sys.). We can com-
pare this result against our result when fitting for σ8 and
Ωm, σ8(Ωm/0.25)0.57 = 0.80 ± 0.05 marginalised over nui-
sance parameters. The COSMOS results are ∼ 1.6σ above
ours, giving a higher amplitude of clustering. The 3D COS-
MOS lensing analysis in Schrabback et al. (2010) gives, for
flat ΛCDM, a value σ8(Ωm/0.3)0.51 = 0.75 ± 0.08, consis-
tent with our results at the ∼ 0.2σ level. Part of the rea-
son for the lower quoted clustering amplitude in Schrabback

et al. (2010) is a different treatment of the non-linear power
spectrum (more consistent with ours): if they use the same
treatment as Massey et al. (2007), they find 0.79 ± 0.09,
higher by 5 per cent. Other differences in clustering ampli-
tude between the two COSMOS results could come from the
different treatment of PSF estimation, charge-transfer ineffi-
ciency, the availability of more photometric data to improve
the photometric redshifts, or differences in analysis meth-
ods (scales used and so on). In short, the COSMOS lensing
results are consistent with ours, with the exact comparison
depending on the method of analysis and the treatment of
systematic errors.

We can also compare against cosmic shear results from
stripe 82 of the SDSS itself. There are two such results that
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Challenges	
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Challenge 1: analysis complexity	

15	

•  ~6 z bins: 21 bin-bin correlations x 
3 observables x 15 data points each 
= ~1000 data points	

•  10002 (accurate) covariance matrix	

•  ~8 cosmological model parameters	

•  Of order 100 nuisance model 
parameters	

•  Do standard analysis methods work 
properly in this regime?	

•  2pt WL + higher order stats or 
other probes is even worse	

CFHTLenS: Tomographic weak lensing 9

Figure 1. Tomographic redshift distribution. The upper panel shows the
effective weighted number of galaxies as a function of their maximum pos-
terior photometric redshift estimate, separated into six tomographic bins
between 0.2 < z

BPZ

< 1.3. The effective weighted number of galaxies in
each redshift bin is constant. The lower panel shows the redshift distribution
for each selected bin as estimated from the weighted sum of the photometric
redshift probability distributions P (z).

P (z) redshift distributions displayed in the lower panel of Figure 1
that we use in this analysis.

3.5 Population Monte Carlo Sampling likelihood analysis
method

In this study we perform a Bayesian likelihood analysis of
CFHTLenS and the auxiliary data, discussed in Section 2, to con-
strain the parameters of a range of cosmological models. To calcu-
late the likelihood values we use the Population Monte Carlo sam-
pling software COSMOPMC4 (Kilbinger et al. 2011), modified to
include an optional simultaneous fit of cosmic shear and the intrin-
sic alignment model outlined in Section 3.2. Future releases of this
software package will include this option. The Population Monte
Carlo method is described in Wraith et al. (2009) along with a com-
parison to the more standard Markov-Chain Monte Carlo method
for cosmological parameter estimation. We also refer the reader to a
detailed discussion of the COSMOPMC analysis of 2D CFHTLenS
cosmic shear data in Kilbinger et al. (2013) for further information
about the methodology.

We assume a matter power spectrum derived from the Eisen-
stein & Hu (1998) transfer function with a Smith et al. (2003) non-
linear correction. For dark energy cosmologies, where the equa-
tion of state of dark energy parameter, w

0

6= �1, a modulation
of the non-linear power is required (McDonald et al. 2006) which
we apply using of the scaling correction from Schrabback et al.
(2010); Refregier et al. (2011). The Smith et al. (2003) halo-model
prescription for the non-linear correction has been calibrated on
numerical simulations and shown to be accurate to between 5 per
cent and 10 per cent over a wide range of k scales (Eifler 2011)
and found to be of sufficient accuracy for the statistical power of
CFHTLenS (Vanderveld et al. 2012). Whilst our assumed transfer

4 CosmoPMC: www.cosmopmc.info

function includes baryonic oscillations on large scales, we are un-
able to include the uncertain effects of baryons on small physical
scales. Semboloni et al. (2011) present an analysis of cosmological
hydrodynamic simulations to quantify the effect of baryon physics
on the weak gravitational lensing shear signal, using a range of dif-
ferent baryonic feedback models. For the ⇠

+

angular scales we use
we would expect baryons to induce at most a ⇠ 10 per cent de-
crease in the signal relative to a dark matter only Universe, in the
mid-to-high redshift tomographic bins where our highest signal-to-
noise measurements are made. This is assuming the ‘AGN feed-
back’ model which leads to the largest changes in the matter power
spectrum of the simulations that were studied by Semboloni et al.
(2011), where we note that this scenario is the one that matches
observed gas fractions in groups. In the cosmological analysis that
follows, we present an additional conservative analysis where the
tomographic data most susceptible to significant errors caused by
baryonic or non-linear effects are removed (see Benjamin et al.
2013, for further discussion). If significant errors exist, however,
the inclusion and marginalisation over the intrinsic alignment am-
plitude A in our analysis, which modulates the amplitude of the
observed shear power spectrum, should work to some extent, to
reduce the impact of these effects in addition to mitigating contam-
ination by intrinsic galaxy alignments.

We use COSMOPMC to analyse CFHTLenS and WMAP7 in-
dependently. For the combined results with BOSS and our assumed
H

0

prior from R11, we importance-sample the WMAP7-only like-
lihood chain, multiplying each sample point with the CFHTLenS,
BOSS and R11 posterior probability. For our CFHTLenS-only flat
⇤CDM analysis we limit our parameter set to the matter density
parameter, ⌦

m

, the amplitude of the matter power spectrum con-
trolled by �

8

, the baryon density parameter ⌦b, the Hubble param-
eter h, and the power spectrum spectral index n

s

. With WMAP7 we
also include into the parameter set the reionisation optical depth ⌧ ,
the Sunyaev-Zel’dovich template amplitude A

SZ

, and the primor-
dial amplitude of the matter perturbations �2

R

, from which we de-
rive �

8

. The equation of state of dark energy parameter, w
0

and
dark energy density parameter ⌦

de

are also included for non-flat or
non-⇤ cosmological models. We use flat priors throughout which
are broad enough to cover the full 3� posterior distribution in each
parameter direction for each combination of data. Throughout the
paper we quote and plot 68 per cent and 95 per cent Bayesian con-
fidence or credibility regions. These regions contain 68 per cent
and 95 per cent of the posterior probability determined from the
multi-dimensional distribution of points from the PMC parameter
sample. All figures showing the resulting joint-constraints on two
parameters, are marginalised over the multi-dimensional parameter
space that is not shown.

4 RESULTS

Figure 2 presents the observed two-point correlation function
ˆ⇠ij
+

(✓) for every tomographic bin combination in our chosen six
redshift bin analysis. With N

t

tomographic bins, there are N
t

(N
t

+

1)/2 independent combinations, or 21 combinations in our case.
The panels show the different ij bin combinations, ordered with
increasing redshift bin i from left to right, and increasing redshift
bin j from lower to upper, where the redshift distributions of each
bin are shown and tabulated in Section 3.4. The auto-correlated
bins lie along the diagonal. The data points are calculated using
the shear correlation function estimator in Equation 4, correlat-
ing pairs of galaxies within the full mosaic catalogue for each of
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Heymans et al (2013)	
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Figure 2. The observed two-point correlation function ⇠̂ij
+

(✓). The panels show the different ij redshift bin combinations, ordered with increasing redshift bin
i from left to right, and increasing redshift bin j from lower to upper. Refer to table 1 for the redshift ranges of each tomographic bin. The errors are estimated
from an analysis of N-body lensing simulations as discussed in Section 3.3. The theoretical curves show our fiducial total GG+GI+II signal as a solid line.
When distinguishable from the total, the GG only signal is shown dashed. The magnitude of the GI signal is shown dot-dashed (our fiducial GI model has
a negative anti-correlated signal) and the II signal is shown dotted, where the amplitude is more than 10�7. The results of the broad two-bin tomographic
analysis of Benjamin et al. (2013) are shown in the lower right corner.

the four CFHTLS fields. The measurements from each field are
then combined using a weighted average, where the field weight is
given by the effective number of galaxy pairs in each angular bin.
Note that the results for each ij bin from each field were found
to be noisy but consistent (see Kilbinger et al. 2013, for measure-
ments of the higher signal-to-noise 2D shear correlation function
for each CFHTLS field). The errors, which include sample vari-
ance, are estimated from an analysis of N-body lensing simulations
as discussed in Section 3.3. We remind the reader that the data are
highly correlated, particularly in the low redshift bins. The theoreti-
cal curves show our fiducial WMAP7 best-fit cosmological param-
eter model, with an A = 1 non-linear intrinsic alignment model, to
be a good fit to the data. A possible exception to this are data from
tomographic bin combinations that include the lowest redshift bin,
which we discuss further in Section 4.1. The individual components
are shown; GG (dashed), GI (dot-dashed) and II (dotted) models
with the total GG+GI+II shown as a solid line. For comparison we
also show the results of the broad two-bin tomographic analysis of

Benjamin et al. (2013) in the lower right corner to demonstrate the
low-level of II and GI contamination expected for this high redshift
selected analysis.

4.1 Tomographic Data Visualization

With 21 tomographic bin combinations, two statistics ˆ⇠ij
+

(✓) and
ˆ⇠ij� (✓), and 5 angular scales, we have a total of p = 210 data
points, half of which are shown in Figure 2. In the cosmological
parameter constraints that follow, it is this large data vector, and a
correspondingly large covariance matrix, that we use in the likeli-
hood analysis. Purely for improving the visualization of this large
data set, however, we propose the following method to compress
the data, motivated by the different methods of Massey et al. (2007)
and Schrabback et al. (2010).

To compress angular scales, we first calculate a WMAP7 cos-
mology GG-only theory model ⇠ij

fid

for each redshift bin combina-
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This	is	a	challenging	statistical	measurement:	
a	non-linear	inverse	problem	

…that	we	must	reliably	solve	for	galaxies	
that	are	near	our	S/N	and	resolution	limits!	

Challenge 2: a new era in shear estimation	
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Some perspective: what do the galaxies 
we are measuring look like?	

Image credits: 
D. Lang	
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S/N > 10 galaxies	
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Resolved	
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Highest S/N galaxies (S/N>14)	



The standard paradigm�
(until recently)	

•  Select galaxies for which shapes seem measurable	

•  Estimate a shape for each galaxy	

•  Take some kind of weighted average, ɣ ~ <e>	

•  As these methods improve, they will eventually 
become unbiased	
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We know there are basic mathematical
 reasons why this won’t work.	



The new paradigm	
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Now what?	
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Now what?	
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2. Calibrate 
with fake 

objects inserted 
in real data	

1. Calibrate 
with 

simulations	

3. Estimate 
ensemble shears, 
not galaxy shapes	

(Bernstein & 
Armstrong 2014; 
Schneider+15)	

4. External 
calibration: 

CMB lensing	

Must	include	a	
fully	realistic	

galaxy	
population,	

PSF,	…	



Or… MetaCalibrate	
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d	

d(shear)	

d	

d(systematic)	

Use	these	derivatives	to	measure	the	
response	of	the	entire	measurement	

pipeline	with	the	correct	galaxy	population!	

Huff,	RM,	Sheldon,	Hirata	(in	prep)	



Where’s the challenge?	

•  These all sound good in principle	

•  Have not been demonstrated to the level of 
accuracy needed for e.g. LSST	

•  Some come with major computational or 
statistical challenges, particularly when trying 
to carry through to the full shear analysis	
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Conclusion	
•  Upcoming surveys will provide a flood of 

beautiful data the likes of which we have 
never seen before	

• More work is needed to ensure that we 
have methods in place for	
•  Believable shear estimation	
•  Robust joint analysis and systematics 

marginalization	
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