Local approximation MCMC for computationally intensive models

¹Youssef Marzouk joint work with ¹Patrick Conrad, ¹Andrew Davis, ²Natesh Pillai, ³Aaron Smith

¹Department of Aeronautics and Astronautics Center for Computational Engineering & Center for Statistics Massachusetts Institute of Technology http://uqgroup.mit.edu

> ²Department of Statistics Harvard University

³Department of Mathematics and Statistics University of Ottawa

8 June 2016

Inference with computationally intensive models

A terrestrial example: ice sheet dynamics in western Antarctica

Western Antarctic Ice Sheet

[Rignot et al. 2011]

Pine Island Glacier

[NASA]

Marzouk et al.

Posterior density of the parameters

$$\pi(heta) :=
ho(heta|\mathbf{d}) \propto \mathcal{L}(\mathbf{d},\mathbf{f}(heta))
ho(heta)$$

Ingredients:

- ▶ Parameters $\theta \in \mathbb{R}^d$; data $\mathbf{d} \in \mathbb{R}^n$
- Prior density $p(\theta) : \mathbb{R}^d \to \mathbb{R}^+$
- Forward model $\mathbf{f} : \mathbb{R}^d \to \mathbb{R}^n$
 - Often a black-box function (the setting for this talk!)
 - Each evaluation is expensive
- Likelihood function $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$
 - $\mathcal{L}(\mathbf{d}, \mathbf{f}(\theta)) = p(\mathbf{d}|\theta)$; compares model predictions to observed data
 - Each evaluation requires, in principle, an evaluation of ${f f}$

- Surrogates for f or L are very useful for Bayesian inference in this setting...
- ► Simple approach: construct an approximation of **f** or *L* over the *prior* distribution
 - Convergence of this approximation (e.g., in L²_p) yields convergence to the true posterior

- Posterior-focused surrogates can improve efficiency
 - Posterior-focused polynomial chaos approach [Li & M, SISC 2014]
 - Data-driven model reduction [Cui, M, & Willcox IJNME 2014]
 - RBF approximations [Bliznyuk et al. 2012, Joseph 2012]
- In general, samples are then drawn from an **approximate** posterior
- Approximation cost borne a priori; must balance with sampling error

Sampling from the exact posterior:

- Delayed-acceptance schemes [Christen & Fox 2005]: at least one full model evaluation per accepted sample
- We take a different approach: asymptotically exact MCMC, via incremental and infinite refinement of surrogates
 - Posterior exploration and surrogate construction occur simultaneously
 - Asymptotic exactness: convergence of surrogate tied to stationarity of the MCMC chain

Given X_0 , simulate chain $\{X_t\}_{t \le N}$ according to transition kernel:

MH Kernel $K_{\infty}(x, \cdot)$

- Given X_t , draw $q_t \sim Q(X_t, \cdot)$ from kernel Q with (symmetric) translation invariant density $q(x, \cdot)$
- 2 Compute acceptance ratio

$$\alpha = \min\left(1, \frac{\mathcal{L}(\mathbf{d}, \mathbf{f}(q_t))p(q_t)}{\mathcal{L}(\mathbf{d}, \mathbf{f}(X_t))p(X_t)}\right)$$

3 Draw $u \sim \mathcal{U}(0, 1)$. If $u < \alpha$, let $X_{t+1} = q_t$, otherwise $X_{t+1} = X_t$.

- Evaluates forward model N times
- Run-time can be dominated by cost of f

MCMC with a surrogate and posterior adaptation

Given X_0 , initialize a sample set S_0 , then simulate chain $\{X_t\}$ with kernel:

MH Kernel $K_t(x, \cdot)$

- Given X_t , draw $q_t \sim Q(X_t, \cdot)$ from kernel Q with (symmetric) translation invariant density $q(x, \cdot)$
- Ompute acceptance ratio

$$\alpha = \min\left(1, \frac{\mathcal{L}(\mathbf{d}, \tilde{\mathbf{f}}_t(q_t))p(q_t)}{\mathcal{L}(\mathbf{d}, \tilde{\mathbf{f}}_t(X_t))p(X_t)}\right)$$

- S As needed, select new samples near q_t or X_t, yielding S_t ⊆ S_{t+1}. Refine $\tilde{\mathbf{f}}_t \rightarrow \tilde{\mathbf{f}}_{t+1}$.
- Draw $u \sim \mathcal{U}(0, 1)$. If $u < \alpha$, let $X_{t+1} = q_t$, otherwise $X_{t+1} = X_t$.
- Approximation $\tilde{\mathbf{f}}_t$ built from sample set $S_t = \{\theta_i : \mathbf{f}(\theta_i) \text{ has been run}\}$
- Continue adaptation forever (as $t \to \infty$)

Local approximations

- To compute the approximation f̃(θ), construct a model over the ball *B_R*(θ)
- ▶ Use samples $\theta_i \in S$ at distance $r = \|\theta \theta_i\|$ with weight

$$w(r) = \begin{cases} 0 < w'(r) \le 1 & r \le R \\ 0 & \text{else} \end{cases}$$

- Choose R so that M(d) samples have non-zero weight, e.g., where M(d) ensures that a quadratic is fully determined
- Approximations converge locally under loose conditions (e.g., **f** continuously differentiable with Lipschitz gradients)
 - For example, quadratic approximations over $\mathcal{B}_R(\theta)$ [Conn *et al.*]:

$$\|\mathbf{f} - \mathcal{Q}_R \mathbf{f}\| \leq \kappa(\nu, \lambda, d) R^3$$

Local approximation illustration

Experimental design: triggering refinement

- **1** Random refinement β_t
 - With probability β_t , such that $\sum_t \beta_t = \infty$, refine near X_t or q_t
- 2 Acceptance probability error indicator γ_t
 - Estimate error in acceptance ratio using cross-validation

$$\alpha_i^+ = \min\left(1, \frac{\mathcal{L}(\mathbf{d}, \tilde{\mathbf{f}}_t^{\sim i}(q_t)) p(q_t)}{\mathcal{L}(\mathbf{d}, \tilde{\mathbf{f}}_t(X_t)) p(X_t)}\right) \quad \alpha_i^- = \min\left(1, \frac{\mathcal{L}(\mathbf{d}, \tilde{\mathbf{f}}_t(q_t)) p(q_t)}{\mathcal{L}(\mathbf{d}, \tilde{\mathbf{f}}_t^{\sim i}(X_t)) p(X_t)}\right)$$

Compute error indicators

$$\epsilon^+ = \max_i |\alpha - \alpha_i^+|$$
 $\epsilon^- = \max_i |\alpha - \alpha_i^-|$

• Refine if
$$\epsilon^+ > \gamma_t$$
 or $\epsilon^- > \gamma_t$

Experimental design: performing refinement

Local space filling refinement

To space fill near $\xi_t = X_t$ or $\xi_t = q_t$, given radius R, locally solve $\theta^* = \underset{\|\xi_t - \theta'\|_2 \le R}{\operatorname{arg\,max}} \min_{\theta_i \in \mathcal{S}_t} \|\theta' - \theta_i\|_2$ beginning at ξ_t and add $\theta^* \to \mathcal{S}_{t+1}$

 Alternative approach: use [Moré & Sorensen 1983] to add a new point while explicitly controlling poisedness

Theorem (Conrad, M, Pillai, Smith 2015)

Let the log-posterior be approximated with local quadratic models; assume that $\theta \in \mathcal{X} \subseteq \mathbb{R}^d$ for compact \mathcal{X} , or that $\pi(\theta) := p(\theta|\mathbf{d})$ obeys a *Gaussian* envelope condition,

$$\lim_{r\to\infty}\sup_{|\theta|=r}|\log\pi(\theta)-\log p_{\infty}(\theta)|=0,$$

for some quadratic form log p_∞ with negative definite coefficient matrix.

Then, under standard regularity assumptions for geometrically ergodic kernel K_{∞} and posterior π , the chain X_t is **ergodic** for the **exact posterior**:

$$\lim_{t\to\infty} \|\mathbb{P}(X_t) - \pi\|_{TV} = 0$$

Many algorithmic variations:

- ► Target of approximation
 - Forward model: $f(\theta)$
 - Log-likelihood: $\log \mathcal{L}(\mathbf{d}, \mathbf{f}(\boldsymbol{\theta}))$
- Types of local approximations
 - Regression with low-order polynomials
 - Gaussian process regression
 - Quadratic regression given derivatives $\partial_{\theta} \mathbf{f}$
- MCMC kernels
 - Random-walk Metropolis, adaptive Metropolis
 - Proposals (e.g., MALA, manifold MALA, HMC) that extract *derivative* information from the approximation
- \blacktriangleright Parallel chains, sharing a common pool of model evaluations ${\cal S}$

Many algorithmic variations:

- ► Target of approximation
 - Forward model: $f(\theta)$
 - Log-likelihood: $\log \mathcal{L}(\mathbf{d}, \mathbf{f}(\boldsymbol{\theta}))$
- Types of local approximations
 - Regression with low-order polynomials
 - Gaussian process regression
 - Quadratic regression given derivatives $\partial_{\theta} \mathbf{f}$
- MCMC kernels
 - Random-walk Metropolis, adaptive Metropolis
 - Proposals (e.g., MALA, manifold MALA, HMC) that extract *derivative* information from the approximation

 \blacktriangleright Parallel chains, sharing a common pool of model evaluations ${\cal S}$

Example: elliptic PDE inverse problem

- Elliptic PDE inverse problem: $\nabla \cdot (\kappa(x)\nabla u(x)) = -f$
- Infer permeability field κ(x) from limited/noisy observations of pressure u
- ► Karhunen-Loève expansion: $\log \kappa(x) = \sum_{i=1}^{d} \theta_i \sqrt{\lambda_i} \phi_i(x)$. Standard Gaussian priors on θ_i .

Marzouk et al.

Example: elliptic PDE inverse problem

- Elliptic PDE inverse problem: $\nabla \cdot (\kappa(x)\nabla u(x)) = -f$
- Infer permeability field κ(x) from limited/noisy observations of pressure u
- Karhunen-Loève expansion: $\log \kappa(x) = \sum_{i=1}^{d} \theta_i \sqrt{\lambda_i} \phi_i(x)$. Standard Gaussian priors on θ_i .

15 / 32

Marzouk et al.

Example: elliptic PDE inverse problem

- Elliptic PDE inverse problem: $\nabla \cdot (\kappa(x)\nabla u(x)) = -f$
- Infer permeability field κ(x) from limited/noisy observations of pressure u
- Karhunen-Loève expansion: $\log \kappa(x) = \sum_{i=1}^{d} \theta_i \sqrt{\lambda_i} \phi_i(x)$. Standard Gaussian priors on θ_i .

- Model for genetic "toggle switch" synthesized in *E. coli*
- ODE system, six parameters to infer
- Uniform priors, Gaussian observational errors
- Real experimental data

Genetic toggle switch posterior

Error indicator versus random refinements

Percentage of refinements triggered randomly (β_t) , rather than by error indicator (γ_t) :

MIT

Many algorithmic variations:

► Target of approximation

- Forward model: f(θ)
- Log-likelihood: $\log \mathcal{L}(\mathbf{d}, \mathbf{f}(\boldsymbol{\theta}))$

Types of local approximations

- Regression with low-order polynomials
- Gaussian process regression
- Quadratic regression given derivatives $\partial_{\theta} \mathbf{f}$

MCMC kernels

- Random-walk Metropolis, adaptive Metropolis
- Proposals (e.g., MALA, manifold MALA, HMC) that extract *derivative* information from the approximation

Parallel chains, sharing a common pool of model evaluations S

Groundwater tracer transport model

Nonlinear PDE for hydraulic head

 $\nabla \cdot (h\kappa \nabla h) = -f_h$

• Darcy velocity $(u, v) = -h\kappa \nabla h$ then enters tracer transport equation:

$$\frac{\partial c}{\partial t} + \nabla \cdot \left(\left(d_m \mathbf{I} + d_l \begin{bmatrix} u^2 & uv \\ uv & v^2 \end{bmatrix} \right) \nabla c \right) - \begin{bmatrix} u \\ v \end{bmatrix} \cdot \nabla c = -f_t,$$

- Tracer advects according to velocity and well forcing
- Observe tracer concentration at well locations, at several times, with Gaussian error
- Infer for piecewise constant conductivities, given log-normal priors
- Forward model takes about 6 seconds to evaluate

Log-conductivity field $(\log \kappa)$

Marzouk et al.

Hydraulic head and velocity

Well locations and tracer concentrations

Х

Groundwater hydrology problem: posterior distribution

Single chain performance

- **Now:** build a common pool of model runs \mathcal{S} across parallel workers
- ▶ Run *N* chains of 100,000 steps each
- Discard 10% of each chain as burn-in; use *effective sample size (ESS)* to measure efficiency
- ▶ ESS per CPU-second would be constant with a naïve implementation

- Model ice as highly viscous non-Newtonian fluid
- Two-dimensional model, thin ice assumption
- Ice flows north to south
- East and west edges have fixed velocity
- Satellites provide high–accuracy velocity observations

Velocity and ice thickness

Log-basal friction

- Coupled system of nonlinear PDEs relates ice stream velocities to basal friction, ice thickness, and surface elevation
- Observe velocity on a 10×10 grid, with small Gaussian error
- Infer for log-friction field as 12 basis coefficients in KL expansion, given log-normal priors

$$\log \beta(x, y) = \sum_{i=1}^{12} \theta_i \sqrt{\lambda_i} \phi_i(x, y)$$

$$\theta_i \sim N(0, 1)$$

Showing 6 of 12 parameters:

- ► Forward model takes about 25 seconds to evaluate
- Perform MCMC with 10 chains, each of 200 000 steps, discarding first 10% as burn-in
- Standard MCMC would take about two months
- Feasible with adaptive Metropolis, quadratic approximation, and parallel chains
- Approximate MCMC runs in about one day, roughly 50× improvement
- Used about 35 000 runs of the forward model

- Introduced a new framework for using local approximations within MCMC; proved that the framework produces asymptotically exact samples
 - Underlying idea: Regularity of the likelihood enables far fewer model evaluations than direct MCMC
- Introduced a parallel MCMC scheme, building local approximations from model evaluations shared across chains
- Much ongoing work:
 - Other experimental design approaches
 - Extensions to higher dimensions
 - Hybrid global/local approximation
 - Regression approximations for pseudomarginal MCMC
 - Other "intractable" likelihoods

- Open-source implementation in MUQ, http://muq.mit.edu
- P. Conrad, Y. Marzouk, N. Pillai, A. Smith, "Accelerating asymptotically exact MCMC for computationally intensive models via local approximations." *J. Amer. Statist. Assoc.*, in press (2016). Also arXiv:1402.1694.

Support from US Department of Energy, Office of Advanced Scientific Computing Research (ASCR)