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Project goals

1. Catalog all galaxies and stars that are visible through the next
generation of telescopes.

I The Large Synoptic Survey Telescope, for example, will house a
3200-megapixel camera producing 8 terabytes of images nightly.

2. Identify promising galaxies for spectrograph targeting.
I Better understand dark energy and the geometry of the universe.

3. Replace Photo, a carefully hand-tuned heuristic for building
astronomical catalogs from photometric data

I It isn’t obvious that we can outperform Photo.

4. Develop an extensible model and inference procedure, for use by the
astronomical community.

I Future applications might include finding supernovae and detecting
near-Earth asteroids.
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An astronomical image

An image from the Sloan Digital Sky Survey, showing a galaxy from the
constellation Serpens, 100 million light years from Earth, along with several
other galaxies and many stars from our own galaxy.
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Outline

1. review graphical models
2. our graphical model for astronomical images (Celeste)
3. review approximate inference
4. approximate inference for Celeste
5. scaling Celeste to catalog the universe
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Our approach: graphical models

p(a, b, c) = p(c |a, b)p(b|a)p(a)
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Our approach: graphical models

p(a, b, c) = p(c |b)p(b|a)p(a)
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Our approach: graphical models

p(a, b, c) = p(c |a, b)p(b|a)pθ(a)
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Our approach: graphical models

p(a,b, c) =
N∏

n=1

[p(cn|a, bn)p(bn|a)] p(a)
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Our approach: graphical models

p(a, b, c) = p(c |a, b)p(b|a)p(a)
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Our approach: posterior inference

p(a, b|c)︸ ︷︷ ︸
posterior

∝ p(c |a, b)︸ ︷︷ ︸
likelihood

p(b|a)p(a)︸ ︷︷ ︸
prior
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The Celeste graphical model
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Brightness priors

For light source s, the energy emitted in the r band

rs |(as = i) ∼ Gamma
(

Υ(i),Ψ(i)
)
.

The log ratios of brightnesses in adjacent bands (the colors)

cs |(as = i) ∼ MvNormalMix
(

Ω(i),Λ(i),Ξ(i)
)
.

Then the brightness `sb in each band b is a deterministic function of rs
and cs .
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Scientific color priors
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Galaxies: light-density model

The light density for galaxy s is modeled as
mixture of two extremal galaxy prototypes:

hs (w) = θshs1 (w) + (1− θs)hs0 (w) .

Each prototype (i = 0 or i = 1) is a mixture of
bivariate normal distributions:

hsi (w) =
J∑

j=1

η̄ijφ (w ;µs , ν̄ijQs) .

Shared covariance matrix Qs accounts for the
scale σs , rotation ϕs , and axis ratio ρs .

An elliptical galaxy,
θs = 0

A spiral galaxy, θs = 1
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Idealized sky view

The brightness for sky position w is

Gb(w) =
S∑

s=1

`sbgs(w)

where

gs (w) =

{
1 {µs = w} , if as = 0 (“star”)
hs(w), if as = 1 (“galaxy”).
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Astronomical images

Images differ from the idealized sky view due to

1. pixelation and point spread

fnbm(w) =
K∑

k=1

ᾱnbkφ
(
wm;w + ξ̄nbk , τ̄nbk

)
Gnbm = Gb ∗ fnbm

2. background radiation and calibration

Fnbm = ιnb [εnb + Gnbm]

3. finite exposure duration

xnbm| (as , rs , cs)Ss=1 ∼ Poisson (Fnbm)
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Intractable posterior

Let Θ = (as , rs , cs)Ss=1. The posterior on Θ is intractable because of
coupling between the sources:

p(Θ|x) =
p(x |Θ)p(Θ)

p(x)

and

p(x) =

∫
p(x |Θ)p(Θ) dΘ

=

∫ N∏
n=1

B∏
b=1

M∏
m=1

p(xnbm|Θ)p(Θ) dΘ.
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Variational inference

Variational inference approximates the exact posterior p with a simpler
distribution q? ∈ Q.
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Variational inference

The optimization problem can be written without p(x) or p(Θ|x):

q? = argmin
q∈Q

[KL( q(θ) ‖ p(Θ|x) )] (1)

= argmin
q∈Q

[Eq log q(θ)− Eq log p(Θ|x)] (2)

= argmin
q∈Q

[Eq log q(θ)− Eq log p(Θ, x)− log p(x)] (3)

= argmin
q∈Q

[Eq log q(θ)− Eq log p(Θ, x)] . (4)
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Variational inference vs. MCMC

VI advantages:
I potentially orders of magnitude faster than MCMC
I no unknown “mixing time”
I no post-processing of samples—can compute statistics of the

approximating distribution almost instantly

VI limitations:
I bias—and few error bounds are known for statistics based on an

approximating distribution rather than the true posterior
I may require modeling changes, to avoid intractable expectations
I may necessitate solving difficult optimization problems, even if all

expectations are tractable
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Variational optimization. . .isn’t easy

L (χ, µ, κ, γ, ζ, β, λ, θ, ρ, σ, ϕ)

= C +
N∑

n=1

B∑
b=1

M∑
m=1

{ ∑
a∈{0,1}S

S∏
s=1

χas
s (1− χs)1−as

{∫
r1

∫
c1

∫
k1
· · ·
∫
rS

∫
cS

∫
kS

xnbm log

[
εnb +

S∑
s=1

rs

br∏
j=b

exp {csb}
b−1∏
j=br

exp {csb}

×
∫ 3∑

k=1

ᾱnkφ
(
m − w ; ξ̄nbk , Σ̄nbk

)
gsi (w) dw

]

− ιnb
S∑

s=1

rs

br∏
j=b

exp {csb}
b−1∏
j=br

exp {csb}
∫ 3∑

k=1

ᾱnkφ
(
m − w ; ξ̄nbk , Σ̄nbk

)
gsi (w) dw

dr1 dc1 dk1 . . . drS dcS dkS

}}

−
S∑

s=1

{
DKL (q(as), p(as)) +

2∑
i=1

χas
s (1− χs)1−as

× [DKL (q(rs |as = i), p(rs |as = i)) + DKL (q (ks , cs |as = i) , ps (ks , cs |as = i))]

}
.
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However,

I An approximating distribution that factorizes across light sources (a
“structured mean-field” assumption) makes most expectations
tractable:

q(Θ) =
S∏

s=1

q(Θs).

I The delta method for moments approximates the remaining
expectations.

I Existing catalogs provide good initial settings for the variational
parameters.

I Light sources are unlikely to contribute photons to distant pixels.
I The model contains an auxiliary variable indicating the mixture

component that generated each source’s colors.
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Posterior predictive check on a “stamp”

Left is a 51 pixel × 51 pixel sub-region of an astronomical image, captured
through the r band filter. Each pixel’s value corresponds to the number of
photons that hit it. The right panel shows Eq? [Fnbm], the mean of xnbm with
respect to our posterior approximation.
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Results (June 2015)
photo celeste improve

position 0.22 0.20 .02 (.00)
missed gals 28 / 654 15 / 654 .02 (.01)
missed stars 8 / 654 31 / 654 -.04 (.01)
color u-g 1.10 0.49 .61 (.04)
color g-r 0.16 0.09 .07 (.01)
color r-i 0.09 0.06 .03 (.00)
color i-z 0.25 0.10 .15 (.01)
brightness 0.76 1.60 -.83 (.12)
profile 0.19 0.23 -.04 (.02)
axis ratio 0.17 0.13 .04 (.01)
scale 0.37 1.28 -.91 (.17)
angle 19.40 18.10 1.40 (.80)

Jeffrey Regier, Andrew Miller, Jon McAuliffe, Ryan Adams, Matthew
Hoffman, Dustin Lang, David Schlegel, and Prabhat. Celeste: Variational

inference for a generative model of astronomical images. ICML 2015.
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Results on synthetic data

real synthetic
photo celeste celeste

position 0.22 0.20 0.08
missed gals 28 / 654 15 / 654 14 / 654
missed stars 8 / 654 31 / 654 6 / 654
color u-g 1.10 0.49 0.20
color g-r 0.16 0.09 0.05
color r-i 0.09 0.06 0.04
color i-z 0.25 0.10 0.08
brightness 0.76 1.60 0.29
profile 0.19 0.23 0.16
axis ratio 0.17 0.13 0.11
scale 0.37 1.28 0.23
angle 19.40 18.10 14.90

Model misfit leaves room for improvement. Enhancing the galaxy model
is a promising research direction.
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Cataloging the universe

SDSS dataset

I 20 TB of images
I 500 million stars and galaxies
I 100 GB catalog–scales linearly with input size
I 5 million CPU-hour budget

Scaling

I exact Hessian for Newton’s method with a trust region
I Ryan Giordano (UCB)

I object-level parallelism (block coordinate descent)
I Kyle Barbary (Berkeley Center for Cosmological Physics)

I pixel-level parallelism for “Knights Landing” processors
I Kiran Pramnany (Intel)
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github.com/jeff-regier/Celeste.jl
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