Approximate inference for generative models of astronomical images

Jon McAuliffe with the DESI collaboration

Statistics Department UC Berkeley

June 7th, 2016

The DESI collaboration

Jeff Regier Ryan Giordano Jon McAuliffe Andy Miller Ryan

Ryan Adams

Debbie Bard Dustin Lang Aaron Meisner David Schlegel Prabhat

Project goals

- 1. Catalog all galaxies and stars that are visible through the next generation of telescopes.
 - The Large Synoptic Survey Telescope, for example, will house a 3200-megapixel camera producing 8 terabytes of images nightly.
- 2. Identify promising galaxies for spectrograph targeting.
 - Better understand dark energy and the geometry of the universe.
- 3. Replace Photo, a carefully hand-tuned heuristic for building astronomical catalogs from photometric data
 - It isn't obvious that we can outperform Photo.
- 4. Develop an extensible model and inference procedure, for use by the astronomical community.
 - Future applications might include finding supernovae and detecting near-Earth asteroids.

An astronomical image

An image from the Sloan Digital Sky Survey, showing a galaxy from the constellation Serpens, 100 million light years from Earth, along with several other galaxies and many stars from our own galaxy.

Outline

- 1. review graphical models
- 2. our graphical model for astronomical images (Celeste)
- 3. review approximate inference
- 4. approximate inference for Celeste
- 5. scaling Celeste to catalog the universe

$$p(a, b, c) = p(c|a, b)p(b|a)p(a)$$

p(a, b, c) = p(c|b)p(b|a)p(a)

 $p(a, b, c) = p(c|a, b)p(b|a)p_{\theta}(a)$

$$p(a, \mathbf{b}, \mathbf{c}) = \prod_{n=1}^{N} \left[p(c_n | a, b_n) p(b_n | a) \right] p(a)$$

$$p(a, b, c) = p(c|a, b)p(b|a)p(a)$$

Our approach: posterior inference

The Celeste graphical model

Brightness priors

For light source s, the energy emitted in the r band

$$r_{s}|(a_{s}=i) \sim \operatorname{Gamma}\left(\Upsilon^{(i)},\Psi^{(i)}\right).$$

The log ratios of brightnesses in adjacent bands (the colors)

$$c_{s}|(a_{s}=i) \sim \operatorname{MvNormalMix}\left(\Omega^{(i)}, \Lambda^{(i)}, \Xi^{(i)}\right).$$

Then the brightness ℓ_{sb} in each band *b* is a deterministic function of r_s and c_s .

Scientific color priors

Galaxies: light-density model

The light density for galaxy *s* is modeled as mixture of two extremal galaxy prototypes:

$$h_{s}(w) = \theta_{s}h_{s1}(w) + (1-\theta_{s})h_{s0}(w).$$

Each prototype (i = 0 or i = 1) is a mixture of bivariate normal distributions:

$$h_{si}(w) = \sum_{j=1}^{J} \bar{\eta}_{ij} \phi(w; \mu_s, \bar{\nu}_{ij} Q_s).$$

Shared covariance matrix Q_s accounts for the scale σ_s , rotation φ_s , and axis ratio ρ_s .

An elliptical galaxy, $\theta_s = 0$

A spiral galaxy, $\theta_s = 1$

Idealized sky view

The brightness for sky position w is

$$G_b(w) = \sum_{s=1}^S \ell_{sb} g_s(w)$$

where

$$g_s(w) = \begin{cases} \mathbf{1} \{\mu_s = w\}, \text{ if } a_s = 0 \text{ ("star")} \\ h_s(w), \text{ if } a_s = 1 \text{ ("galaxy")}. \end{cases}$$

Astronomical images

Images differ from the idealized sky view due to

1. pixelation and point spread

$$f_{nbm}(w) = \sum_{k=1}^{K} \bar{\alpha}_{nbk} \phi\left(w_m; w + \bar{\xi}_{nbk}, \bar{\tau}_{nbk}\right)$$
$$G_{nbm} = G_b * f_{nbm}$$

2. background radiation and calibration

$$F_{nbm} = \iota_{nb} \left[\epsilon_{nb} + G_{nbm} \right]$$

3. finite exposure duration

$$x_{nbm} | (a_s, r_s, c_s)_{s=1}^S \sim \operatorname{Poisson}(F_{nbm})$$

Intractable posterior

Let $\Theta = (a_s, r_s, c_s)_{s=1}^S$. The posterior on Θ is intractable because of coupling between the sources:

$$p(\Theta|x) = rac{p(x|\Theta)p(\Theta)}{p(x)}$$

and

$$egin{aligned} p(x) &= \int p(x|\Theta) p(\Theta) \, d\Theta \ &= \int \prod_{n=1}^N \prod_{b=1}^B \prod_{m=1}^M p(x_{nbm}|\Theta) p(\Theta) \, d\Theta. \end{aligned}$$

Variational inference

Variational inference approximates the exact posterior p with a simpler distribution $q^* \in Q$.

Variational inference

The optimization problem can be written without p(x) or $p(\Theta|x)$:

$$q^{\star} = \arg\min_{q \in Q} \left[\mathrm{KL}(q(\theta) \| p(\Theta|x)) \right]$$
(1)

$$= \arg\min_{q \in Q} \left[\mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\Theta|x) \right]$$
(2)

$$= \arg\min_{q \in Q} \left[\mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\Theta, x) - \log p(x) \right]$$
(3)

$$= \arg\min_{q \in Q} \left[\mathbb{E}_q \log q(\theta) - \mathbb{E}_q \log p(\Theta, x) \right].$$
(4)

Variational inference vs. MCMC

VI advantages:

- potentially orders of magnitude faster than MCMC
- no unknown "mixing time"
- no post-processing of samples—can compute statistics of the approximating distribution almost instantly

VI limitations:

- bias—and few error bounds are known for statistics based on an approximating distribution rather than the true posterior
- may require modeling changes, to avoid intractable expectations
- may necessitate solving difficult optimization problems, even if all expectations are tractable

Variational optimization...isn't easy

$$\begin{split} \mathcal{L}(\chi,\mu,\kappa,\gamma,\zeta,\beta,\lambda,\theta,\rho,\sigma,\varphi) &= C + \sum_{n=1}^{N} \sum_{b=1}^{B} \sum_{m=1}^{M} \left\{ \sum_{a \in \{0,1\}^{S}} \prod_{s=1}^{S} \chi_{s}^{a_{s}} (1-\chi_{s})^{1-a_{s}} \left\{ \int_{r_{1}} \int_{c_{1}} \int_{k_{1}} \cdots \int_{r_{5}} \int_{c_{5}} \int_{k_{5}} x_{nbm} \log \left[\epsilon_{nb} + \sum_{s=1}^{S} r_{s} \prod_{j=b}^{b_{r}} \exp\{c_{sb}\} \prod_{j=b_{r}}^{b-1} \exp\{c_{sb}\} \right] \\ &\times \int \sum_{k=1}^{3} \bar{\alpha}_{nk} \phi \left(m - w; \bar{\xi}_{nbk}, \bar{\Sigma}_{nbk}\right) g_{si} \left(w\right) dw \\ &- \iota_{nb} \sum_{s=1}^{S} r_{s} \prod_{j=b}^{b_{r}} \exp\{c_{sb}\} \prod_{j=b_{r}}^{3} \exp\{c_{sb}\} \int \sum_{k=1}^{3} \bar{\alpha}_{nk} \phi \left(m - w; \bar{\xi}_{nbk}, \bar{\Sigma}_{nbk}\right) g_{si} \left(w\right) dw \\ &dr_{1} \ dc_{1} \ dk_{1} \ \dots \ dr_{S} \ dc_{S} \ dk_{S} \\ &- \sum_{s=1}^{S} \left\{ D_{\mathrm{KL}} \left(q(a_{s}), p(a_{s})\right) + \sum_{i=1}^{2} \chi_{s}^{a_{s}} \left(1 - \chi_{s}\right)^{1-a_{s}} \right\} \\ &\times \left[D_{\mathrm{KL}} \left(q(r_{s}|a_{s} = i), p(r_{s}|a_{s} = i)\right) + D_{\mathrm{KL}} \left(q(k_{s}, c_{s}|a_{s} = i), p_{s} \left(k_{s}, c_{s}|a_{s} = i\right)\right) \right] \\ \end{split}$$

22 / 29

However,

An approximating distribution that factorizes across light sources (a "structured mean-field" assumption) makes most expectations tractable:

$$q(\Theta) = \prod_{s=1}^{S} q(\Theta_s).$$

- The delta method for moments approximates the remaining expectations.
- Existing catalogs provide good initial settings for the variational parameters.
- Light sources are unlikely to contribute photons to distant pixels.
- The model contains an auxiliary variable indicating the mixture component that generated each source's colors.

Posterior predictive check on a "stamp"

Left is a 51 pixel \times 51 pixel sub-region of an astronomical image, captured through the r band filter. Each pixel's value corresponds to the number of photons that hit it. The right panel shows $\mathbb{E}_{q^*}[F_{nbm}]$, the mean of x_{nbm} with respect to our posterior approximation.

Results (June 2015)

	photo	celeste	improve
position	0.22	0.20	.02 (.00)
missed gals	28 / 654	15 / 654	.02 (.01)
missed stars	8 / 654	31 / 654	04 (.01)
color u-g	1.10	0.49	.61 (.04)
color g-r	0.16	0.09	.07 (.01)
color r-i	0.09	0.06	.03 (.00)
color i-z	0.25	0.10	.15 (.01)
brightness	0.76	1.60	83 (.12)
profile	0.19	0.23	04 (.02)
axis ratio	0.17	0.13	.04 (.01)
scale	0.37	1.28	91 (.17)
angle	19.40	18.10	1.40 (.80)

Jeffrey Regier, Andrew Miller, Jon McAuliffe, Ryan Adams, Matthew Hoffman, Dustin Lang, David Schlegel, and Prabhat. *Celeste: Variational inference for a generative model of astronomical images.* ICML 2015.

Results on synthetic data

	re	synthetic	
	photo	celeste	celeste
position	0.22	0.20	0.08
missed gals	28 / 654	15 / 654	14 / 654
missed stars	8 / 654	31 / 654	6 / 654
color u-g	1.10	0.49	0.20
color g-r	0.16	0.09	0.05
color r-i	0.09	0.06	0.04
color i-z	0.25	0.10	0.08
brightness	0.76	1.60	0.29
profile	0.19	0.23	0.16
axis ratio	0.17	0.13	0.11
scale	0.37	1.28	0.23
angle	19.40	18.10	14.90

Model misfit leaves room for improvement. Enhancing the galaxy model is a promising research direction.

Cataloging the universe

SDSS dataset

- ► 20 TB of images
- 500 million stars and galaxies
- ▶ 100 GB catalog-scales linearly with input size
- 5 million CPU-hour budget

Scaling

- exact Hessian for Newton's method with a trust region
 - Ryan Giordano (UCB)
- object-level parallelism (block coordinate descent)
 - Kyle Barbary (Berkeley Center for Cosmological Physics)
- pixel-level parallelism for "Knights Landing" processors
 - Kiran Pramnany (Intel)

github.com/jeff-regier/Celeste.jl

This repository Sear	ch	Pull requests Issues	Gist		📌 +• 📓
eff-regier / Celest	e.jl I Pull requests I III Wiki a generative model of astronomical	≁ Pulse <u>lit</u> Graph images — Edit	⊘ Umwat is ⇔ Settings	ch ≠ S 🛧 Unstar	1 ¥ Fork
1,000 comm	ts ÿ 3 branches		🛇 2 releases	4 contrit	outors
ranch: master + New	r pull request	New file Find file	HTTPS + https://g	github.com/jeff 😭	Download Zl
kbarbary remove Grid	I requirement			Latest commit c26	53337 2 hours ag
bin	updates for SloanDigitalSkySurvey v0	.0.4			5 days ag
dat	Clean up process script, add a limit to	local sources option			8 days ag
doc	Fix transform indexing				26 days ag
src	remove Grid requirement				2 hours ag
test	add test for interp_sky()				14 hours ag
.gitignore	gitignore .cov files				a year ag
.travis.yml	removed nightly from .travis				10 days ag
LICENSE.md	added Celeste packageformerly sto	red on bitbucket			a year ag
PYTHON	Sort out vectors and matrices in Optin	izeElbo			4 months ag
README.md	modified readme again, and again				3 months ag
REQUIRE	remove Grid requirement				2 hours ag
deps.jl	Sort out vectors and matrices in Optin	lizeElbo			4 months ag
README.md					
BREADME.md	e.jl				

eleste.jl finds and characterizes stars and galaxies in astronomical images. It implements variational inference for t