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• Overview	of	photometric	redshi6s	
– Template	methods	
– Training-based	methods	

• Some	open	issues	
• Spectroscopic	incompleteness	
• Robust	training	
• p(z)	coverage	
• Combining	results	from	mul$ple	codes	
• p(z,α)	storage	
• Op$mizing	spectroscopic	samples	

• Defining	ideal	LSST	algorithm	

• Some	examples	of	issues	with	current	codes



Spectroscopy	provides	ideal	redshi6	
measurements	–	but	is	infeasible	for	large	samples

• Redshi6	('z')	measurements	allow	us	to	determine	how	far	back	in	
Universe's	history	we	are	looking	for	an	object		

• Study	galaxy	evolu$on,	cosmology,	etc.	by	measuring	proper$es	as		
a	func$on	of	redshi6	

• To	determine:	measure	spectrum	of	light	from	object	with	
spectrograph;	compare	observed	wavelengths	of	spectral	features	
to	rest	frame	values	to	get	z		

• At	LSST	“gold	sample”	(i<25.3)	depths,	~100	hours	on	a	10m	
telescope	to	determine	a	redshi6	(75%	of	$me)	spectroscopically	

• With	a	next-genera$on,	5000-fiber	spectrograph	on	a	10m	
telescope,	s$ll	>50,000	telescope-years	to	measure	redshi6s	for	
LSST	“gold”	weak	lensing	sample	(4	billion	galaxies)!

Credit:	ESO



Spectroscopy	provides	ideal	redshi6	
measurements	–	but	is	infeasible	for	large	samples

• Alterna$ve:		use	broad	
spectral	features	to	
determine	z	:	a	
photometric	redshi6	or	
photo-z	

• Advantage:	high	
mul$plexing	

• Disadvantages:	lower	
precision,																																																	
calibra$on	uncertain$es

Credit:	ESO



Photometric	redshi6s	rely	on	the	existence	of	
broad	spectral	features	in	galaxy	spectra...

Dunlop	2012  

Important spectral features for photo-z
● 4000Å/Balmer break: absorption by H II and Ca II lines
● Lyman break at 912Å: absorption by neutral hydrogen

Dunlop 2012



but	those	features	are	stronger	in	some	galaxies	
than	others

Brammer	et	al.		2008

  

Template-%&ing method

6 spectral templates

3000 Synthetic SEDs

10̂4 mock observations

EAZY - Brammer et al. 2008

Template spectraA common photo-z code: EAZY
• Galaxies	with	older	

stellar	popula$ons	
exhibit	stronger	
'breaks'	

• As	a	result,	photo-
z's	can	be	more	
precise	for	redder	
galaxies	

• At	higher	redshi6s,	
blue	galaxies	with	
young	stellar	
popula$ons	
dominate	-	photo-z	
problem	gets	
harder

Oldest

Youngest



Example:	expected	photo-z	performance	for	LSST	
ugrizy

Green:	Requirements	on	actual	
performance;	grey:	requirements	on	
performance	with	perfect	template	
knowledge	(as	in	these	sims)

S.	Schmidt



Basic	methods:	Template	fikng	photo-z's

• Generally	determine	
posterior	probability	
distribu$on	for	z	|	fluxes:	
p(z)	

• Can	also	provide	info	on	
galaxy	proper$es	from	
template	fit	

• 	E.g.,	template	index	T	or	
galaxy	parameters	αi	such	
as	stellar	mass,	star	
formation	rate,	etc.):	
p(z,α)	(cf.	López-Sanjuan	
talk)
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Posterior 
probability 
distributions
A galaxy with 
high redshi◆

Chevallard & Charlot 2016

Chevallard	&	Charlot	2016
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!
• Typical	algorithms:	

– Determine	likelihood	of	
colors	(=ra$os	of	fluxes	
between	bands)	as	a	
func$on	of	z	and	template	
– O6en	via	χ2(z,T)	or	
min(	{χ2(z|T)}	);	some	
algorithms	use	linear	
combina$ons	of	
templates

Ti Grid 
Flexure

Benitez	2000

– Typically	u$lize	prior	for	redshi6	or	redshi6	&	type	based	on	
magnitude	(some$mes	size/morphology	as	well)	

– Then	mul$ply	to	get	posterior.	.	.		
Can	use	spectra	of	galaxies	spanning	full	range	of	possible	proper$es	
to	tune	templates/filter	systems,	establish	priors,	etc.

Likelihood

Prior

Posterior

Basic	methods:	Template	fikng	photo-z's
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• Use	galaxies	with	known	
redshi6	and	uniform/well-
understood	sampling	to	
determine	rela$onship	between	
z	and	colors/fluxes		

• Can	take	advantage	of	progress	
in	machine	learning	&	stats,	but	
generally	extrapolate	poorly;	
Training	set	MUST	span	full	
range	of	proper$es	&	z	of	
galaxies

Basic	methods:	Training-based	photo-z's

Freeman,	JN	et	al.	2009

Spectroscopic	RedshiF	(z)



Basic	methods:	Training-based	photo-z's

Freeman,	JN	et	al.	2009

• Many	algorithms:	e.g.	
– Neural	networks		
– Boosted	Decision	Trees	
– Random	Forest	regression	
– k-Nearest	Neighbor	
– Diffusion	map	+	regression	

• For	bright,	nearby	galaxies,	
training	sets	are	~complete	and	
both	template-based	&	training-
set-based	algorithms	perform	
similarly	 Spectroscopic	RedshiF	(z)



!
• Zhou	et	al.	2016	(in	prep.):	empirical,	LSST-like	dataset:	CFHT	LS	

ugriz	+	Subaru	y	+	DEEP2/DEEP3/3D-HST	redshi6s

At	higher	redshi6s,	the	photo-z	problem	is	more	
difficult

EAZY	(template	code,	untuned) Random	Forest	Regression

Zhou,	JN	et	al.	2016,	in	prep.



Open	issues:	dealing	with	incompleteness	in	training/
calibra$on	datasets

• In	current	deep	spectroscopic	
surveys,	25-60%	of	targets	fail	
to	yield	secure	redshi6s 

• z	success	rate	depends	on	
galaxy	proper$es 

• Es$mated	need	99-99.9%	
completeness	to	prevent	
systema$c	errors	in	calibra$on,	
unless	apply	other	methods	
(e.g.,	cross-correla$ons)	

• Major	issue	for	training-set	
techniques	

!
Data from DEEP2 (Newman et al. 
2013) and zCOSMOS (Lilly et al. 
2009)



Open	issues:	Robust	training	methods

• 1%	incorrect-redshi6	rate	is	
sufficient	to	bias	photo-z's	
beyond	tolerances	

• Depending	on	survey,	up	to	5%	
of	'secure'	redshi6s	are	
incorrect	

• If	can	train	algorithms	in	a	
manner	robust	to	outlier/
wrong	redshi6s,	could	use	the	
broader	set	of	less-secure	
spectroscopic	redshi6s	

• ML	methods	that	extrapolate	
well	would	also	be	interes$ng	 Zhou,	JN	et	al.	2016,	in	prep.



• CANDELS	code	comparison:	Dahlen	et	al.	2013	
• 11	code/template	combina$ons	were	tested	using	~600	redshi6s	

in	GOODS-S	(trained	with	a	separate	set	of	600	redshi6s)	
• Generally	χ2	minimiza$on,	generally	with	some	sort	of	prior.	
• Codes	with	p(z)'s	available	are	marked	by	★		

4 Dahlen et al.

Fig. 1.— Redshift and H-band magnitude distributions of the spectroscopic sample used to train and evaluate the photometric redshifts.

Table 1

Codes included in the CANDELS SED test for calculating photometric redshifts.

IDa PI Code Code ID Template set Em lines Flux shift ∆err ∆SED Inter ref.

2 G. Barro Rainbow A PEGASEb yes yes no no no j
3 T. Dahlen GOODZ B CWWc, Kinneyd yes yes yes yes yes k
4 S. Finkelstein EAZY C EAZYe+BX418f yes no no no yes l
5 K. Finlator SPOC D BC03g yes no no no no m
6 A. Fontana zphot E PEGASEv2.0b yes yes yes no no n, o
7 R. Gruetzbauch EAZY C EAZYe yes yes yes no yes l
8 S. Johnson SATMC F BC03g no no no no yes p
9 J. Pforr HyperZ G Maraston05h no no yes no no q
11 M. Salvato LePhare H BC03g+Polletta07i yes yes yes no no r
12 T. Wikind WikZ I BC03g no no yes no no s
13 S. Wuyts EAZY C EAZYe yes yes yes no yes l

Note. — Col 1: ID number of participant. Col 2: Name of photometric redshift investigator. Col 3: Name of code. Col 4: Code identifier.
Col 5: Template SED used to derive photometric redshifts. Col 6: Are emission lines included in template SEDs (yes/no). Col 7: Applies shifts
to the fluxes or templates based on spectroscopic training sample (yes/no) Col 8: Adds extra errors to the fluxes in addition to fluxes given
in the photometric catalogs (yes/no). Col 9: Adjusts template SEDs based on spectroscopic training set (yes/no). Col 10: Uses interpolations
between template SEDs. Col 11: Reference to code.
a Codes which ID 1 and 10 are not used to calculate photometric redshift in this test, however they are used to calculate masses in the accompa-
nying paper by B. Mobasher et al. (2013, in preparation), b Fioc & Rocca-Volmerange (1997), c Coleman et al. (1980), d Kinney et al. (1996),
e The EASY template set from Brammer et al. (2008) consists of six templates based on the PEGASE models (Fioc & Rocca-Volmerange
1997), f Erb et al. (2010), g Bruzual & Charlot (2003), h Maraston (2005), i Polletta et al. (2007), j Barro et al. (2011), k Dahlen et al.
(2010), l Brammer et al. (2008), m Finlator et al. (2007), n Giallongo et al. (1998), o Fontana et al. (2000), p S. Johnson et al. (2013, in
prep.), q Bolzonella et al. (2000), r S. Arnouts & O. Ilbert (2013, in prep.), and s Wiklind et al. (2008).
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Table 2

Photometric redshift results for WFC3 H-band selected catalog.

Code Objects biasaz OLFb σc
F σd

O σe
NMAD σf

dyn OLFg
dyn

2A 589 -0.010 0.092 0.167 0.041 0.038 0.038 0.107
3B 589 -0.007 0.036 0.099 0.035 0.034 0.033 0.048
4C 589 -0.009 0.051 0.114 0.044 0.040 0.042 0.061
5D 408 -0.030 0.147 0.197 0.073 0.097 0.098 0.034
6E 589 -0.007 0.041 0.104 0.037 0.033 0.033 0.065
7C 589 -0.009 0.053 0.121 0.037 0.033 0.033 0.070
8F 589 -0.008 0.093 0.272 0.064 0.077 0.074 0.051
9G 589 0.013 0.078 0.189 0.050 0.045 0.053 0.063
11H 589 -0.008 0.048 0.132 0.038 0.033 0.030 0.088
12I 589 -0.023 0.046 0.153 0.049 0.054 0.049 0.046
13C 589 -0.005 0.039 0.127 0.034 0.026 0.027 0.075

median(all) 589 -0.008 0.029 0.088 0.031 0.029 0.026 0.054
median(5) 589 -0.009 0.031 0.079 0.029 0.025 0.024 0.056

Note. — a biasz=mean[∆z/(1 + zspec)] after excluding outliers, where ∆z=zspec − zphot.
bOLF=Outlier fraction, i.e., fraction of objects

that are outliers defined as |∆z|/(1 + zspec) > 0.15. c σF = rms[∆z/(1 + zspec)]. d σO = rms[∆z/(1 + zspec)] after excluding outliers.
e σNMAD = 1.48 ×median( |∆z|

1+zspec
). f σdyn rms after excluding outliers with ∆z/(1 + zspec) > 3σdyn.

g OLFg
dyn fraction outliers defined

as objects with ∆z/(1 + zspec) > 3σdyn. The last two rows show the results after adopting the median photometric redshift of all codes, and
the median of the five codes with overall lowest scatter, when calculating the scatter versus the spectroscopic sample.

Table 3

Photometric redshift results for ACS z-band selected catalog.

ID Objects biasz OLF σF σO σNMAD σdyn OLFdyn

2A 614 -0.018 0.086 0.259 0.052 0.054 0.053 0.083
3B 614 -0.004 0.057 0.148 0.039 0.034 0.032 0.091
4C 614 -0.011 0.077 0.197 0.046 0.045 0.045 0.083
5D 446 -0.032 0.067 0.259 0.070 0.087 0.080 0.029
6E 614 -0.010 0.052 0.198 0.044 0.040 0.041 0.065
7C 614 -0.008 0.046 0.149 0.039 0.038 0.036 0.064
8F 614 -0.012 0.140 0.535 0.064 0.079 0.080 0.073
9G 614 0.015 0.121 0.269 0.053 0.057 0.059 0.096
11H 614 -0.009 0.042 0.131 0.040 0.036 0.038 0.050
12I 614 -0.022 0.064 0.173 0.055 0.063 0.059 0.042
13C 614 -0.007 0.046 0.189 0.040 0.035 0.035 0.072

median(all) 614 -0.001 0.036 0.157 0.037 0.033 0.032 0.062
median(5) 614 -0.005 0.041 0.128 0.033 0.028 0.027 0.073

Note. — See comments for Table 2.
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Dahlen	et	al.	2013

Open	issues:	Making	posteriors	great	again



Open	issues:	Making	posteriors	great	again

• Many	analyses	assume	that	
photo-z	codes	are	providing	
posterior	PDFs	with	proper	
coverage	(and	assuming	that	
they	can	add	PDFs	to	get	N(z);	
cf.	Alex	Malz's	talk)	

• Dahlen	et	al.	2013	tested	the	
frac$on	of	spectroscopic	
redshi6s	that	are	in	the	inner	
68%	or	inner	95%	of	their	PDFs	

• Coverage	is	all	over	the	place;	
no	codes	were	good	at	both	
68%	and	95%	points	

20 Dahlen et al.

Fig. 13.— Top panel: distribution of difference in photometric redshifts for close pairs (black line) and random pairs (red line). Bottom
panel: Overdensity of galaxy pairs with similar photometric redshifts after subtracting the random pair distribution. The red solid line is a
Gaussian fit to the data.

Table 5

Error measurement accuracies for the H-band and the z-band selected catalogs.

Code WFC3 H-selected ACS z-selected
conf. int: 68.3% 95.4% 68.3% 95.4%

2A 46.1 40.9
3B 81.6 92.8 76.1 89.1
4C 64.0 88.2 58.5 85.7
5D 2.5 4.2 2.9 5.8
6E 52.0 84.7 48.3 81.6
7C 65.0 87.3 62.9 89.1
8F 15.3 15.6 14.2 14.7
9G 16.3 44.1 15.0 39.6
11H 35.2 54.0a 30.9 46.9a

12I 88.7 96.7 80.1 96.3
13C 52.0 72.7 35.7 51.0

Note. — a This is the result for the 90% confidence interval. The table shows the fraction of galaxies with known spectroscopic redshifts
that falls inside the 68.3% and 95.4% confidence intervals calculated by the different photometric redshift codes. A number significantly lower
than 68% in the 68.3% column indicates that errors are underestimated, and vice versa.

★

★

★

★

★

Dahlen	et	al.	2013



Open	issues:	Making	posteriors	great	again

• LSST	Dark	Energy	Science	
Collabora$on	is	sekng	up	
controlled	tests	of	the	problem	

• Meanwhile,	kludge	in	Kodra	et	
al.	2016:	modify	p(z)'s	

• Shi6	by	constant	in	z	
direc$on;	convolve	with	
Gaussian	kernel;	and	take	to	
a	power	(equivalent	to	
rescaling	errors	in	χ2 

calcula$on)		

• Op$mize	parameters	by	
minimizing	total	L2	norm	of	
devia$on	in	Q-Q	plot	from	
expected	line

Kodra,	JN	et	al.	2016,	in	prep.



Open	issues:	Combining	PDF	results	from	mul$ple	codes

• Dahlen	et	al.	found	that	medians	
of	point	es$mates	from	mul$ple	
codes	(★'s)	have	smaller	sca?er	
(rela$ve	to	spec-z)	than	any	
individual	code	

• All	codes	are	run	on	the	same	
data!		Current	codes	do	not	
make	op$mal	use	of	available	
informa$on...

Results'from'CANDELS'Photo5z'Test''
Results'ACS5z'and'WFC35H'selected'

Rms'vs.'outlier'frac9on'for'ACS5z'and'WFC35H'selected'catalogs.'
Red'dots:'codes'3,'6,'7,'11,'13'
Black'star:'median(all)'
Red'star:'median(3,'6,'7,'11,'13)'
'

Dahlen	et	al.	2013



• Dahlen	et	al.	presented	a	hierarchical	Bayesian	combina$on	
method	(cf.	Press	&	Kochanek,	Lang	&	Hogg,	etc.)	

• Izbicki	&	Lee	2016	use	weighted	combina$ons	of	codes	
• Kodra	et	al.	(in	prep)	inves$gates	using	PDF	that	minimizes	total	

Fréchet	distance	to	remaining	PDFs:	analogous	to	median	

Ways to combine codes: MFD

Minimum Fréchet Distance: Measure of dissimilarity between two
curves.(Eiter T., Mannila H., Computing Discrete Fréchet Distance,
1994)
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Open	issues:	Combining	PDF	results	from	mul$ple	codes

D.	Kodra



Example of combining codes.
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Example of combining codes.
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Example of combining codes.
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Open	issues:	Combining	PDF	results	from	mul$ple	codes

D.	Kodra



Another	possible	use	case:	template-based	and	
training-based	methods	have	different	failure	modes

EAZY	(template	code,	untuned) Random	Forest	Regression

Zhou,	JN	et	al.	2016,	in	prep.

• Iden$fy	poten$al	outliers	from	discrepant	results?



Open	issues:	Storing	p(z,α)

• Carrasco-Kind	&	Brunner	2014	achieved	strong	compression	of	
photo-z	PDFs	using	sparse	representa$on	and	well-chosen	basis	set	

• For	many	LSST	applica$ons,	want	2+-dimensional	PDFs	
• Can	suitably	sparse	(<few	hundred	#s)	representa$ons	be	

achieved?		
• Are	samples	from	PDFs	OK	for	all	science	cases?Sparse representation of photo-z PDFs 5
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||
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= 1 Voigt profile basis func-
tions with the same mean, µ = 0.3, and sigma, � = 0.01, for di↵erent
values of �, which ranges from 0 (blue) to 1� (red). Note that for
� = 0, we recover the standard Gaussian distribution. In a full dic-
tionary, we create these profiles over the entire redshift range of the
galaxy sample for di↵erent values of �.

One of the primary advantages of this method is that these
dictionary entries are composed of analytic functions that can
be combined with other functional forms. There are no re-
strictions, other than computational time, on how large of a
dictionary we can use, as there is no requirement for the dictio-
nary to be permanently stored. Furthermore, a photo-z PDF
can be restored even without reconstructing the dictionary, as
long as the indices and coe�cients are e�ciently stored.
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Figure 4. The representation of an original photo-z PDF (green)
given by three techniques: multi-Gaussian (blue), single Gaussian
(blue dashed line), and sparse basis representation (red). The inset
panel shows the final bases (in black) used to represent the photo-z
PDF while the recovered distribution is shown in red.

As some photo-z PDFs have extended wings, we also gen-
erate N

�

basis functions for each Gaussian basis function with
extended profiles by using a Voigt profile. Voigt profiles are
widely used in spectral line fitting, and are defined as the con-
volution between a Gaussian distribution and a Lorentzian
distribution. A Voigt profile can be written as the real part of
the Faddeeva function (Abramowitz & Stegun 1972):

V (x;�, �) =
1

�

p
2⇡

Re
h
e

�z

2

(1� erf(�iz))
i

(10)

where erf(�iz) is the complex error function. z = (x�µ)+i�

�

p
2

is
a complex variable, where µ is the center of the function, � is
the standard deviation from the Gaussian, and � determines
the strength of the extended wings and is a parameter from the
Lorentz distribution. As a result, if � = 0, we have a Gaussian
distribution with parameters µ and �.

We present examples of di↵erent Voigt profiles in Figure 3
given a fixed µ = 0.3 and � = 0.01, but with � varying from
zero (Gaussian) to one �. We do not, however, select pure
Lorentzian profiles, as they produce distributions that are too
extended to be practical for this analysis. In practice, we find
that an upper limit of � = 0.5� is su�cient to accurately
model any extended wings. Thus, including the Gaussian case
with � = 0, we fix N

�

= 6 and allow � to vary linearly from
0 to 0.5� in steps of 0.1�. Thus, in the most simple case we
would only consider basis functions with � = 0 and N

�

= 1.
In total, the dictionary is composed of N

total

= N

µ

⇥N

�

⇥
N

�

bases, which all have `

2

norm equal to unity. By using our
previous definitions, we have the following approximate rule
of thumb for creating a dictionary:

N
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=

✓
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(11)

Although this is an estimate, it provides a very good approx-
imation to the total number of bases needed given the reso-
lution of the original photo-z PDF. Additional bases are not
necessary and little is gained by using a finer resolution. Photo-
z codes generally provide photo-z PDFs by using roughly two
to three hundred points. According to Equation 11, we notice
that for 250 sample points in a PDF, we would need approx-
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Figure 6. The median of the residual distribution as a function of
the number of fixed bases used to reconstruct each galaxy’s photo-z
PDF when using the sparse representation technique (blue dots).
For reference, the median of the multi-Gaussian residual distribu-
tion (red triangle) and the median of the sparse representation with
variable number of bases (black star) are also shown, where on av-
erage both techniques need fourteen points per photo-z PDF.

which corresponds to a median reconstruction of all one mil-
lion test galaxies at 99.82% at a resolution of �z = 0.011. Since
the original photo-z PDF contained two hundred points, this
implies a compression ratio of ten.

Clearly these results will vary depending on the galaxy
sample. In particular, the data we use in this analysis are from
the CFHTLenS, which is a representative deep survey with
galaxies that have photo-z PDFs with up to twelve peaks. The
performance of the sparse representation also depends directly
on the number of peaks in each PDF when we globally fix
the number of bases. In Figure 7, we display the median of
the residual distribution as a function of the number of peaks
in the photo-z PDF, with di↵erent curves corresponding to
di↵erent numbers of globally fixed bases. For a fixed number
of bases, the residual increases as the number of peaks increase.
Thus, a galaxy sample that consistently has a low number of
peaks will have increased performance when using a smaller
number of bases.

For example, we achieve a 99.5% reconstruction by using
only ten values for galaxies with four or fewer peaks. In Car-
rasco Kind & Brunner (2014b), we discussed the relationship
between the number of peaks and the shape of the photo-z
PDFs with the outlier fraction. With this in mind, we could
reduce the number of bases used to reconstruct a sample and
flag those with a high number of peaks, where the reconstruc-
tion is less reliable, for further investigation. In fact, we achieve
a reconstruction of 99% for photo-z PDFs with three or fewer
peaks when using only five bases for the sparse representation.
This produces a compression ratio of forty when the original
photo-z PDF has two hundred points.

For comparison, we also show the fitting residuals for the
multi-Gaussian (black dashed line) and sparse representation
(black dashed-dotted lines) where the variable number of bases
matches the number of multi-Gaussians. The performance of
the multi-Gaussian fitting is less dependent on the number of
peaks simply because the number of parameters dynamically
changes for each photo-z PDF. Overall, the multi-Gaussian
performance is fairly consistent at around 0.005, even as we

Figure 7. The median of the residual distribution as a function of
the number of peaks in the photo-z PDF when using (solid color
lines) a di↵erent number of fixed bases in the sparse basis represen-
tation, (black dashed line) when using the multi-Gaussian fitting
technique, and (black dashed-dotted line) when using the sparse
representation when the number of bases is equivalent to the num-
ber of multi-Gaussians.

increase the number of peaks. The sparse representation with a
variable number of bases, on the other hand, is less dependent
on the number of peaks and has residuals that are nearly 50%
smaller than the multi-Gaussian fitting at an approximately
constant value of 0.003.

PDF Storage

In the previous section, we discussed how the sparse represen-
tation and the multi-Gaussian fitting can accurately represent
a photo-z PDF by using only a few dozen values with a re-
construction level of 99%. In the case of the multi-Gaussian
fitting, the number of parameters to be stored will depend on
the number of peaks in each individual PDF. As discussed
previously, we will have 3(Np

k

+ 1) parameters, which are all
floating point numbers. For this dataset we found that the av-
erage number of values (or floating point parameters) required
is fourteen; but to store these data for all galaxies, we would
need to combine the results from di↵erent galaxies in order to
take advantage of the galaxies that require fewer values so that
we can also store those galaxies that require a larger number
of parameters. Varying the number of values to store galaxy
photo-z PDFs in this manner might not be practical, as it will
likely depend strongly on the archival and storage system while
also increasing the computational di�culty in dealing with a
varying number of parameters for di↵erent photo-z PDFs. The
practical solution would be to use thirty-nine fixed values (the
maximum required for this dataset) for all galaxies and store
them independently. This result is also true for the varying
sparse representation, which we have demonstrated has a bet-
ter performance in comparison to the multi-Gaussian when
representing a photo-z PDF.

On the other hand, requiring a fixed number of basis func-
tions per galaxy alleviates this issue and also has the additional
benefit that there is no need to pad with zeros since having
more points for single peaked galaxies simply provides a more
accurate representation. We have shown that by using ten to
twenty values we are able to produce a residual on the or-
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• Current	state	of	the	art:	Masters	et	al.	2015	
• Self-organized	map	of	galaxy	colors	 5

Fig. 1.— The 7-color self-organized map (SOM) generated from ∼131k galaxies from the COSMOS survey, selected to be representative
of the anticipated Euclid weak lensing sample. In the center is the 75 × 150 map itself, which encodes the empirical ugrizYJH spectral
energy distributions (SEDs) that appear in the data. The map is colored here by converting the H, i, and u band photometry of the cells to
analogous RGB values, while the brightness is scaled to reflect the average brightness of galaxies in different regions of color space. On the
sides we show examples of 8-band galaxy SEDs represented by particular cells, whose positions in the map are indicated with arrows. The
cell SEDs are shown as black squares. The actual SEDs (shifted to line up in i-band magnitude) of galaxies associated with the cells are
overlaid as green diamonds. Between 9 and 23 separate galaxy SEDs are plotted for each of the cells shown, but they are similar enough
that they are hard to differentiate on this figure. A key feature of the map is that it is topological, in the sense that nearby cells represent
objects with similar SEDs, as can be seen from the two example cells shown in the upper left. Note that the axes of the SOM do not
correspond to any physical quantity, but merely denote positions of cells within the map and are shown to ease comparison between figures.

the number of cells, the topology of the map, the num-
ber of training iterations, and the form and evolution of
the learning rate and neighborhood functions. Perhaps
most influential is the number of cells. The representa-
tive power of the map increases with more cells; however,
if too many cells are used the map will overfit the data,
modeling noise that does not reflect the true data dis-
tribution. Moreover, there is a significant computational
cost to increasing the number of cells. On the other hand,
if too few cells are used, individual cells will be forced
to represent larger volumes of color space, in which the
mapping of color to redshift is less well defined.
We explored a range of alternatives prior to settling on

the map shown throughout this work. A rectangular map
was chosen because this gives any principal component in
the data a preferred dimension along which to align. Our
general guideline in setting the number of cells was that
the map should have sufficient resolution such that the
individual cells map cleanly to redshift using standard
photo-z codes. With 11,250 cells, the map bins galaxies
into volumes, or “voxels”, of color space of comparable
size as the photometric error on the data, with the result
that variations within each color cell generally do not
result in significant change in photo-z estimates. As we
discuss in §6, the true spread in galaxy redshifts within
each color cell is an important quantity to understand

for the calibration of N(z).

4.2. Algorithm implementation

We implemented the SOM algorithm in C for computa-
tional efficiency. The number of computations required is
sizable and scales with both the total number of cells and
the number of training iterations. Optimizations are cer-
tainly possible, and may be necessary if this algorithm
is to be applied to much larger photometric datasets.
We initialized the values of the cell weight vectors with
random numbers drawn from a standard normal distribu-
tion. The number of training iterations used was 2×106,
as only minimal improvements in the map were observed
for larger numbers of iterations. At each iteration, a
random galaxy was selected (with replacement) from the
training sample to update the map.
We applied the algorithm based on seven galaxy colors:

u−g, g−r, r−i, i−z, z−Y , Y −J , and J−H , which are
analogous to the colors that will be measured by Euclid
and used for photo-z estimation. The errors in the colors
are computed as the quadrature error of the photometric
errors in the individual bands. If a training object has a
color that is not constrained due to bad photometry in
one or both of the relevant bands, we ignore that color in
the training iteration. Only the well-measured colors for
that object are used both to find the BMU and update

Open	issues:	Op$mizing	spectroscopic	targe$ng

Masters	et	al.	2015



Open	issues:	Op$mizing	spectroscopic	targe$ng

• Priori$ze	cells	with	few	redshi6s	for	spectroscopic	follow-up	
• Are	there	be?er	ways	to	do	this?	

10

Fig. 6.— Left: The median spectroscopic redshift of galaxies associating with each SOM cell, using only very high confidence (∼100%)
redshifts from the COSMOS master spectroscopic catalog (Salvato et al., in prep). The redshifts come from a variety of surveys that have
targeted the COSMOS field; see text for details. Gray regions correspond to parts of galaxy color space for which no high-confidence
spectroscopic redshifts currently exist. These regions will be of interest for training and calibration campaigns. Right: The same figure,
but including all redshifts above !95% confidence from the COSMOS spectroscopic catalog. Clearly, more of the color space is filled in
when the quality requirement is relaxed, but nevertheless large regions of parameter space remain unexplored.

The preceding analysis treats the photo-z calibration
as a stratified sampling problem, in which the overall
statistics of a population are inferred through targeted
sampling from relatively homogeneous subpopulations.
The gain in statistical precision from using Equation (10)
to estimate ⟨z⟩ can be attributed to the systematic way
in which the full color space is sampled, relative to blind
direct sampling. However, stratified sampling will only
outperform random sampling in the case that the sub-
populations being sampled do, in fact, have lower disper-
sion than the overall distribution–i.e., in the case that the
Pi(z) distributions for the color cells have lower redshift
dispersion than the N(z) distribution of all the galaxies
in a tomographic bin.

6.2. Simulating different sampling strategies

Now we attempt to more realistically estimate the
spectroscopic coverage needed to achieve the requirement
in our knowledge of ⟨z⟩. To begin, we assume that the
cell redshift PDFs from Le Phare are reasonably accu-
rate, and can be taken to represent the true Pi(z) distri-
butions for galaxies in each color cell. (This assumption
is, of course, far from certain, and simply serves as a
first approximation). With the known occupation den-

sity of cells of the map (Figure 3), we can then use Equa-
tion (8) to generate realistic N(z) distributions for differ-
ent tomographic bins. For this illustration, we break the
map up into photo-z-derived tomographic bins of width
∆z = 0.2 over 0 < z < 2 (although Euclid will most
likely use somewhat different bins in practice). An ex-
ample of one of the N(z) distributions modeled in this
way is shown in Figure 8.
The uncertainty in the estimated ⟨z⟩ of these N(z) dis-

tributions can then be tested for different spectroscopic
sampling strategies through Monte Carlo simulations, in
which spectroscopy is simulated by randomly drawing
from the Pi(z) distributions. (Alternatively, given our
knowledge of the individual σ⟨zi⟩ uncertainties, Equa-
tion (11) can be used directly. In fact, the results were
checked in both ways and found to be in agreement).
The results of three possible sampling strategies are

given in Table 1. The simplest strategy tested (“Strategy
1”) is to obtain one spectrum per color cell in order to
estimate the cell mean redshifts. Equation (10) is then
used to compute the overall mean of the tomographic
bin. We expect to meet the Euclid requirement, ∆⟨z⟩ ≤
0.002(1+⟨z⟩), for 3/10 bins (and come close in the others)
with this approach, which would require ∼11k spectra in

Masters	et	al.	2015



Open	issues:	Ideal	photo-z	code?

• What	might	an	ideal	LSST	photo-z	algorithm	look	like?	

• Trained	with	>30,000	spectra	spanning	range	of	spectra	

• Develops	priors	&	tweaks	templates	via	hierarchical	Bayesian	
hyperparameters	

• Incorporates	varia$ons	in	effec$ve	filter	wavelengths	due	to	
observa$onal	condi$ons:	requires	applying	algorithm	to	O(1000)	
measurements	instead	of	O(6)	

• Incorporates	AGN	classifica$on	and	AGN	photo-z	determina$on:	
colors	are	not	constant	with	$me	for	many	objects!	

• Want	algorithms	to	be	fast:	create	ML-based	emulators	for	
template	photo-z's?	

• For	bright	objects,	may	also	be	useful	to	compare	to	ML	
techniques	to	iden$fy	poten$al	outliers



CANDELS	code	comparison:	Dahlen	et	al.	2013

• Many	tests	of	photo-z	algorithms	with	deep,	high-redshi6	dataset.		
Examples:	
• Test	photo-z	performance	as	degrade	photometry	(using	same	

test	spectroscopic	data)	
• Dependence	of	errors	on	redshi6,	magnitude,	&	color	
• Inves$ga$on	of	(lack	of)	consistency	between	photometric	

zero	point	shi6s	from	different	codes	
• Empirical	test	of	photo-z	errors	using	Δz	between	close	pairs14 Dahlen et al.

Fig. 7.— Magnitude distribution of the spectroscopic sub-sample of GOODS-S is shown in red while the full sample is shown in blue. Gray
line shows the degraded spectroscopic sample where the flux of each object has been shifted by ∆m=3.6 mag to match the full sample. The
distributions are normalized to the total number of objects in each sample.

Fig. 8.— Photometric redshift scatter (σO) and outlier fraction when comparing to nominal spectroscopic redshift sample (∆m=0), as well
as samples where the photometry as been shifted to fainter flux levels by ∆m=1, 2, 3, 3.6, and 4 mag, respectively. Results are shown for
one participating code (Code 3B).

CANDELS photo-z investigation 15

Fig. 9.— Photometric redshift scatter (σO) and outlier fraction for individual codes. Black dots show results from the original H-band
selected catalog, while the red dots show the results after fluxes are shifted to fainter limits by ∆m=3.6. Lines connect the results from the
separate codes. Star symbols show the results when using the median of the photometric redshifts of the eight codes participating in this
test.

Fig. 10.— The magnitude dependence of the photometric redshift scatter and outlier fraction using photometric redshifts derived from a
mock catalog based on the spectroscopic redshift sample shifted to fainter magnitudes. Black dots show the scatter σO (scaling on left-hand
y-axis, error bars show bin size). Histograms show the fraction of outliers (scaling on right-hand y-axis).

Dahlen	et	al.	2013



New	work:	Kodra	et	al.	2016

• Compare	predic$ons	of	codes	in	space	of	p(z	|	H)data arrays (logspace z): GOODS-S

Figure : Linear color scale, excluded objects: 417

• Disagreement	on	where	
there	are	redshi6	
spikes	

• Priors	have	huge	effect	
at	low	z	(non-
monotonic	behavior)	

• Different	effec$ve	
smoothings	

• The	performance	of	
these	codes	for	zpeak	
isn't	all	that	
different.	.	.	

D.	Kodra



New	work:	Kodra	et	al.	2016

luminosity functions (z = 1.5): GOODS-S [median (3,3)]

Figure : slice of z = 1.5

• This	can	have	large	(factor	of	few)	effects	on	the	inferred	number	
of	objects	at	a	given	redshi6

D.	Kodra



Conclusions

• Training-based	methods	are	easier	to	get	good	results	from	
than	template-based	methods,	but	don't	extrapolate	well	

• Key	issue	for	LSST	is	inability	to	get	complete	training	sets	
• Other	interes$ng	issues	for	the	next	few	years:	

• Training	algorithms	in	the	presence	of	false	redshi6s	
• Making	sure	p(z)'s	have	proper	coverage	
• Combining	results	from	mul$ple	algorithms	
• Storing	mul$-dimensional	PDFs	compactly	
• Op$mizing	spectroscopic	follow-up	
• Defining	parameters	of	ideal	LSST	algorithm	

• Current	codes	appear	sufficient	to	meet	LSST	requirements,	but	
are	clearly	subop$mal.		Be?er	photo-z's	will	greatly	increase	the	
value	of	LSST	-	e.g.	30%	increase	in	Dark	Energy	Figure	of	Merit


