

Statistical Challenges for Photometric Redshifts

Jeffrey Newman, U. Pittsburgh / PITT-PACC

Deputy Spokesperson, LSST Dark Energy Science Collaboration

Outline

- Overview of photometric redshifts
 - Template methods
 - Training-based methods
- Some open issues
 - Spectroscopic incompleteness
 - Robust training
 - p(z) coverage
 - Combining results from multiple codes
 - p(z,α) storage
 - Optimizing spectroscopic samples
 - Defining ideal LSST algorithm
- Some examples of issues with current codes

- Redshift ('z') measurements allow us to determine how far back in Universe's history we are looking for an object
- Study galaxy evolution, cosmology, etc. by measuring properties as a function of redshift
- To determine: measure spectrum of light from object with spectrograph; compare observed wavelengths of spectral features to rest frame values to get z
- At LSST "gold sample" (*i*<25.3) depths, ~100 hours on a 10m telescope to determine a redshift (75% of time) spectroscopically
- With a next-generation, 5000-fiber spectrograph on a 10m telescope, still >50,000 telescope-years to measure redshifts for LSST "gold" weak lensing sample (4 billion galaxies)!

Spectroscopy provides ideal redshift measurements – but is infeasible for large samples

- Advantage: high multiplexing
- Disadvantages: lower precision, calibration uncertainties

Credit: ESO

Photometric redshifts rely on the existence of broad spectral features in galaxy spectra...

Dunlop 2012

but those features are stronger in some galaxies than others

- Galaxies with older stellar populations exhibit stronger 'breaks'
- As a result, photoz's can be more precise for redder galaxies
- At higher redshifts, blue galaxies with young stellar populations dominate - photo-z problem gets harder

Brammer et al. 2008

Example: expected photo-z performance for LSST *ugrizy*

Green: Requirements on actual performance; grey: requirements on performance with perfect template knowledge (as in these sims)

1

2

photometric redshift

S. Schmidt

Basic methods: Template fitting photo-z's

- Generally determine posterior probability distribution for z | fluxes: p(z)
- Can also provide info on galaxy properties from template fit
- E.g., template index T or galaxy parameters α_i such as stellar mass, star formation rate, etc.): p(z,α) (cf. López-Sanjuan talk)

Basic methods: Template fitting photo-z's

- Typical algorithms:
 - Determine likelihood of colors (=ratios of fluxes between bands) as a function of z and template
 - Often via χ²(z,T) or min({χ²(z|T)}); some algorithms use linear combinations of templates

Benitez 2000

- Typically utilize prior for redshift or redshift & type based on magnitude (sometimes size/morphology as well)
- Then multiply to get posterior. . .

Can use spectra of galaxies spanning full range of possible properties to tune templates/filter systems, establish priors, etc.

 Use galaxies with known redshift and uniform/wellunderstood sampling to determine relationship between z and colors/fluxes

 Can take advantage of progress in machine learning & stats, but generally extrapolate poorly; Training set MUST span full range of properties & z of galaxies

Basic methods: Training-based photo-z's

Basic methods: Training-based photo-z's

- Many algorithms: e.g.
 - Neural networks
 - Boosted Decision Trees
 - Random Forest regression
 - k-Nearest Neighbor
 - Diffusion map + regression
- For bright, nearby galaxies, training sets are ~complete and both template-based & trainingset-based algorithms perform similarly

At higher redshifts, the photo-z problem is more difficult

 Zhou et al. 2016 (in prep.): empirical, LSST-like dataset: CFHT LS ugriz + Subaru y + DEEP2/DEEP3/3D-HST redshifts

Zhou, JN et al. 2016, in prep.

Open issues: dealing with incompleteness in training/ calibration datasets

- In current deep spectroscopic surveys, 25-60% of targets fail to yield secure redshifts
- z success rate depends on galaxy properties
- Estimated need 99-99.9% completeness to prevent systematic errors in calibration, unless apply other methods (e.g., cross-correlations)
- Major issue for training-set techniques

Data from DEEP2 (Newman et al. 2013) and zCOSMOS (Lilly et al. 2009)

Open issues: Robust training methods

- 1% incorrect-redshift rate is sufficient to bias photo-z's beyond tolerances
- Depending on survey, up to 5% of 'secure' redshifts are incorrect
- If can train algorithms in a manner robust to outlier/ wrong redshifts, could use the broader set of less-secure spectroscopic redshifts
- ML methods that extrapolate well would also be interesting

- CANDELS code comparison: Dahlen et al. 2013
- 11 code/template combinations were tested using ~600 redshifts in GOODS-S (trained with a separate set of 600 redshifts)
- Generally χ^2 minimization, generally with some sort of prior.
- Codes with p(z)'s available are marked by ★

Code	Code ID	Template set	bias_z^a	OLF^b	σ_F^c	σ^d_O
Rainbow	А	PEGASE^{b}	-0.010	0.092	0.167	0.041
GOODZ	В	CWW^c , Kinney ^d	-0.007	0.036	0.099	0.035
\mathbf{EAZY}	★ C	$EAZY^e + BX418^f$	-0.009	0.051	0.114	0.044
SPOC	D	$\mathrm{BC03}^{g}$	-0.030	0.147	0.197	0.073
zphot	★ E	$PEGASEv2.0^{b}$	-0.007	0.041	0.104	0.037
EAZY	\mathbf{C}	EAZY^{e}	-0.009	0.053	0.121	0.037
SATMC	\mathbf{F}	$\mathrm{BC03}^{g}$	-0.008	0.093	0.272	0.064
HyperZ	G	$Maraston05^h$	0.013	0.078	0.189	0.050
LePhare	\star Н	$BC03^g + Polletta07^i$	-0.008	0.048	0.132	0.038
WikZ	★ I	$\mathrm{BC03}^{g}$	-0.023	0.046	0.153	0.049
EAZY	★ C	EAZY^{e}	-0.005	0.039	0.127	0.034
			-0.008	0.029	0.088	0.031
			-0.009	0.031	0.079	0.029

median(all) median(5)

Dahlen et al. 2013

- Many analyses assume that photo-z codes are providing posterior PDFs with proper coverage (and assuming that they can add PDFs to get N(z); cf. Alex Malz's talk)
- Dahlen et al. 2013 tested the fraction of spectroscopic redshifts that are in the inner 68% or inner 95% of their PDFs
- Coverage is all over the place; no codes were good at both 68% and 95% points

Code	WFC3 H -selected		
conf. int:	68.3%	95.4%	
$2\mathrm{A}$	46.1		
$3\mathrm{B}$	81.6	92.8	
4C *	64.0	88.2	
$5\mathrm{D}$	2.5	4.2	
$6\mathrm{E}$ \star	52.0	84.7	
$7\mathrm{C}$	65.0	87.3	
$8\mathrm{F}$	15.3	15.6	
$9\mathrm{G}$	16.3	44.1	
$11 \mathrm{H}$ \star	35.2	54.0^{a}	
12I *	88.7	96.7	
13C \star	52.0	72.7	

Dahlen et al. 2013

Open issues: Making posteriors great again

- LSST Dark Energy Science
 Collaboration is setting up
 controlled tests of the problem
- Meanwhile, kludge in Kodra et al. 2016: modify *p(z)*'s
 - Shift by constant in z direction; convolve with Gaussian kernel; and take to a power (equivalent to rescaling errors in χ² calculation)
- Optimize parameters by minimizing total L2 norm of deviation in Q-Q plot from expected line

Kodra, JN et al. 2016, in prep.

 Dahlen et al. found that medians of point estimates from multiple codes (★'s) have smaller scatter (relative to spec-z) than any individual code

 All codes are run on the same data! Current codes do not make optimal use of available information...

Dahlen et al. 2013

- Dahlen et al. presented a hierarchical Bayesian combination method (cf. Press & Kochanek, Lang & Hogg, etc.)
- Izbicki & Lee 2016 use weighted combinations of codes
- Kodra et al. (in prep) investigates using PDF that minimizes total \bullet Fréchet distance to remaining PDFs: analogous to median

Another possible use case: template-based and training-based methods have different failure modes

• Identify potential outliers from discrepant results?

Zhou, JN et al. 2016, in prep.

Open issues: Storing $p(z, \alpha)$

- Carrasco-Kind & Brunner 2014 achieved strong compression of photo-z PDFs using sparse representation and well-chosen basis set
- For many LSST applications, want 2+-dimensional PDFs
- Can suitably sparse (<few hundred #s) representations be achieved?
- Are samples from PDFs OK for all science cases?

Carrasco-Kind & Brunner 2014

Open issues: Optimizing spectroscopic targeting

- Current state of the art: Masters et al. 2015
- Self-organized map of galaxy colors

Masters et al. 2015

Open issues: Optimizing spectroscopic targeting

- Prioritize cells with few redshifts for spectroscopic follow-up
- Are there better ways to do this?

Masters et al. 2015

- What might an ideal LSST photo-z algorithm look like?
 - Trained with >30,000 spectra spanning range of spectra
 - Develops priors & tweaks templates via hierarchical Bayesian hyperparameters
 - Incorporates variations in effective filter wavelengths due to observational conditions: requires applying algorithm to O(1000) measurements instead of O(6)
 - Incorporates AGN classification and AGN photo-z determination: colors are not constant with time for many objects!
 - Want algorithms to be fast: create ML-based emulators for template photo-z's?
 - For bright objects, may also be useful to compare to ML techniques to identify potential outliers

Dahlen et al. 2013

- Many tests of photo-z algorithms with deep, high-redshift dataset.
 Examples:
 - Test photo-z performance as degrade photometry (using same test spectroscopic data)
 - Dependence of errors on redshift, magnitude, & color
 - Investigation of (lack of) consistency between photometric zero point shifts from different codes
 - Empirical test of photo-z errors using Δz between close pairs

• Compare predictions of codes in space of p(z | H)

- Disagreement on where there are redshift spikes
- Priors have huge effect at low z (nonmonotonic behavior)
- Different effective smoothings
- The performance of these codes for z_{peak} isn't all that different...

D. Kodra

• This can have large (factor of few) effects on the inferred number of objects at a given redshift

plot of luminosity functions, z = 1.50 corresponding to distance modulus mu = 45.23

D. Kodra

Conclusions

- Training-based methods are easier to get good results from than template-based methods, but don't extrapolate well
- Key issue for LSST is inability to get complete training sets
- Other interesting issues for the next few years:
 - Training algorithms in the presence of false redshifts
 - Making sure p(z)'s have proper coverage
 - Combining results from multiple algorithms
 - Storing multi-dimensional PDFs compactly
 - Optimizing spectroscopic follow-up
 - Defining parameters of ideal LSST algorithm
- Current codes appear sufficient to meet LSST requirements, but are clearly suboptimal. Better photo-z's will greatly increase the value of LSST - e.g. 30% increase in Dark Energy Figure of Merit