The Velocity Distribution Function of Galaxy Clusters as a Cosmological Probe

Michelle Ntampaka McWilliams Center for Cosmology Carnegie Mellon University

In collaboration with Hy Trac, Jessi Cisewski, & Layne Price

Image credit: nasa.gov

dunkle Materie

Scheinbare Geschwindigkeiten im Comahaufen.

v=8500 km/sek	6900 km/sek
7900	6700
7600	6600
7000	5100 (?)

Sources of Scatter in Dynamical Mass Estimates From the virial theorem, $\sigma_v \propto M^{1/3}$

Multidark Simulation

HALO MASS FUNCTION

It's impolite to ask a galaxy cluster it's mass

Eddington Bias in Dynamical Masses

Scatter in the $M(\sigma)$ relationship, coupled with the steeplydeclining HMF, alters the observed HMF.

Halo Mass Function

Halo Mass Function with Measurement Error

 True mass function can be recovered if the scatter is wellunderstood.

$$\chi^2$$
 analysis for constraining $\sigma_8 \& \Omega_m$
 $\chi^2(y|\sigma_8, \Omega_m) = (\bar{y} - y^*)^T \hat{\Psi}^{-1} (\bar{y} - y^*)$

Constraining Cosmological Models

• When cluster masses are perfectly known, the parameter constraints contain the fiducial model.

Constraining Cosmological Models

- Measurement error biases to low Ω_m and high σ_8 .
- Fiducial model lies outside of the 99% likelihood contour.

THE VELOCITY DISTRIBUTION FUNCTION

Velocity PDF

Velocity Distribution Function

Velocity Distribution Function with velocity error

χ^2 analysis for constraining $\sigma_8 \& \Omega_m$

$$\chi^2(y|\sigma_8, \Omega_m) = (\bar{y} - y^*)^T \hat{\Psi}^{-1} (\bar{y} - y^*)$$

Constraining Cosmological Models with the VDF

- Constraints can be approximated as a band in the $\Omega_{\rm m}\text{-}\sigma_8$ plane.

Constraining Cosmological Models with the VDF

• Measurement error introduces a nearly-negligible bias.

Constraining Cosmological Models with the VDF

- HMF and VDF give similar constraints when true cluster properties are known.
- VDF is less sensitive to measurement error than the HMF.

- Can be robustly predicted from N-body simulations that capture dynamics of substructure in clusters.
- Applying the VDF requires a large spectroscopic data set of cluster members.
- Applying the VDF to smaller observations (N<200) retains the insensitivity to measurement error, though with broader constraints.

The Velocity Distribution Function of Galaxy Clusters

- A new way to quantify the abundance of galaxy clusters using dynamic measurements (arxiv: 1602.01837).
- Less sensitive to systematics than a more traditional halo mass function approach where scatter in mass estimate introduces bias.