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1. BACKGROUND

Dwarf galaxies, some of the most dark matter dominated structures of 
our universe, are  excellent   test-beds for dark matter theories. 
Unfortunately,  mass modelling of these systems suffers from the  well 
documented mass-anisotropy degeneracy.  This makes  discriminating 
between core and cuspy profiles a very difficult problem. For the case of 
spherically symmetric systems, we describe a method for  non-
parametric modelling of the radial and tangential velocity moments. In 
this way the mass-anisotropy degeneracy is reduced into mass model 
inference, irrespective of kinematics. Building on previous work, we use 
computer aided geometric design (CAGD) tools, specifically b-splines, 
to represent the  velocity moments.  We use evolutionary algorithms to 
perform model inference and we extend the notion of Empirical Bayes 
priors by using mock stellar systems to construct prior information. We 
test our method using synthetic data.  Our  algorithm  constructs  the 
best kinematic profile and discriminates between competing dark matter 
models. We apply our method to the Fornax dwarf spheroidal galaxy. 
Using a King brightness profile and testing various dark matter mass 
models, our model inference conclusively favours   a simple mass-
follows-light system. We find that the anisotropy profile of Fornax is 
tangential  and  we estimate a total mass of

and a mass-to-light ratio  of 

2. DATA

Synthetic Data: a) We constructed a “difficult” set of  synthetic data 
points  from a King (1966) brightness profile, a Burkert (1995) DM 
profile, and an MLT (Tiret & Combes 2007) anisotropy profile. 
b) Mock Nbody systems:  Work in progress.

Fornax: We used published heliocentric velocity values and 
membership characterization from Walker et al. (2009).  For the 
brightness profile, we constructed the  projected number density 
profile, normalized to the total luminosity of Fornax (Lokas 2009). 

3. METHODS
A.  Following the Jeans formalism, we expand the radial velocity 
dispersion in a b-spline basis:  

Hence the line-of-sight velocity dispersion becomes a linear equation 
of the unknown coefficients

and the kinematic (anisotropy) profile is estimated directly from the 
data, without unnecessary assumptions. 
B. We use evolutionary algorithms (EAs) for fitting and model 
selection. The fitness function is related to the AICc model selection 
criterion. 

C. Once best model is recovered, we use MCMC to estimate 
uncertainties in model parameters. 
Advantages: 

1. Reduces estimation bias.
2. b-splines convolved with equations from physics results strong 

constraints on the b-spline geometric shape
3. Model equations are linearized, the problem is simplified.

Difficulties:
1. Optimum smoothing/regularization. Solution: We build prior 

information for the optimum smoothing from ideal theoretical models, 
thus we generalize the notion of empirical Bayes. 

2. Optimum b-spline knots. Solution: We use Evolutionary 
Algorithms (EAs) for the estimation of the optimum knot distribution.  

4. RESULTS
Synthetic Data: the evolutionary algorithm identifies the reference DM 
model from which the synthetic data were created (Burkert). It also 
reconstructs the radial and velocity moments with excellent accuracy. 

Top panel: evolution of the 
maximum  (solid line) and 
average (dotted line) fitness 
value for all  generations. 
As the evolutionary 
algorithm approaches the 
best solution the average 
value of fitness  converges 
to  the fitness value of the 
best solution (individual).

Bottom panel: corrected 
Akaike Information Criterion 
 (AICc) for each generation. 
The difference in AICc 
values between the best 
and the other candidates is 
> 10, thus the model 
selection conclusive.    

MCMC highest likelihood 
fit of second order velocity 
moments. Grey region 
corre-sponds to 1σ unce-
rtainty region in all model 
parameters. The dashed 
lines correspond to the 
true values of the 
reference profile from 
which the synthetic data 
were created. Blue line is 
the highest likelihood fit. 

Top panel: line-of-sight 
velocity dispersion. Black 
dots are the synthetic 
data with their uncertainty. 

Middle panel: radial velo-
city dispersion, σ

rr
2. Black 

squares are the vertices 
of the control polygon of 
the b-spline represe-
ntation.

Bottom panel: tangential 
velocity dispersion.   

Fornax: We model Fornax by assuming a King brightness profile, a 
constant mass-to-light ratio, Y, and in addition the following separate DM 
components: NFW, Burkert, Einasto and a black hole in the center of 
the galaxy. In all of the models there is a constant mass-to-light ratio, Y, 
but only in one we do not use a separate DM mass profile, thus in total 
we have 5 different mass models. We refer to the model with no 
separate DM component as const Y. 
Based on the available brightness and kinematic data sets, our 
algorithm predicts conclusively (ΔAICc > 20),  that there is no need for a 
separate dark matter component in the dwarf galaxy. That is, from a 
variety of cored and cuspy DM profiles and modelling independent of 
the MAD our best candidate  is a simple mass-follows-light model. This 
does not imply that there is no dark matter in the dSph, however  it does 
suggest that in a well mixed system, like Fornax, there is no need for a 
separate DM component that does not follows the stellar profile.   The 
second best candidate, which is also strongly disfavoured (ΔAICc ~ 12), 
is a simple mass-follows-light model with a black hole in the center. We  
emphasize that these results should be verified with the use of proper 
Bayesian inference and the use of different tracer profiles;  (work in 
progress) .   

Top panel: Evolution  
of the fitness value 
(max: solid line, 
average: dotted) for 
all geenerations. 

Middle panel: 
evolution of the 
standard deviation 
(std) of the fitness 
values of the 
population for each 
generation. As the 
algorithm converges, 
the std goes to lower 
values, indicating 
convergence. 

Bottom panel: 
Evolution of the AICc 
model selection 
criterion for each 
generation. 

Evolution of the 
differences ΔAICc 
between the best 
and the other co-
mpeting models. A 
difference ΔAICc > 
20 indicates conclu-
sive model selecti-
on. The horizontal 
axis is in log scale. 
The simple constY 
model (no separate 
DM component) is 
conclusively the 
most favored candi-
date

Numerical values of the 
differences ΔAICc between the 
various competing mass mo-
dels.

Marginalized 
distributions of total 
Mass and mass-to-
lighte ratio, Y, for the 
best fitted model for 
the Fornax dSph. 

FORNAX (cont...) FORNAX (cont...)

Fornax maximum likelihood 
fit.

Top panel: Brightness fit. 

Bottom panel: line-of-sight 
velocity dispersion. Blue 
dots are binned σlos 
values. Purple dashed line 
is the highst likelihood  fit. 
Grey region corresponds to 
1σ uncertainy in all model 
parameters.  

Reconstructed 
radial (top) and 
tangential (bot-
tom) velocity 
moments. The 
solid purple line 
is the maxim-
um likelihood 
fit. Grey region 
is the 1σ unce-
rtainty region in 
all model para-
meters. These 
velocity mo-
ments produce 
a tangential a-
nisotropy pro-
file, β(r) <0.  
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5. CONCLUSIONS

J.E.AN.S solver: Building on previous work (Diakogiannis et al. 2014a,b) 
we further develop our method by introducing an evolutionary algorithm 
that evaluates the optimum knot distribution for the b-spline representation 
of the radial velocity dispersion, σ

rr
2. That is the best kinematic profile 

independent of any anisotropy, β(r),  assumptions. 
Our algorithm uses a fitness function that includes the corrected Akaike 
information criterion for second order bias, AICc.  This model inference 
criterion has the advantage that is fast to evaluate and it can be applied to 
small number of available data points, thus it allows fast model selection 
between competing DM candidates. It has the disadvantage that it does not 
include information from the whole range of Markov chains in the MCMC. 
As a result, it is not as robust as Bayesian inference methods, e.g. model 
inference using Bayesian evidence (Feroz et al. 2009).
We extend the notion of empirical Bayes (Casella 1985), by presenting a 
new algorithm for the evaluation of prior information from ideal theoretical 
models  for the optimum smoothing for the line-of-sight velocity dispersion, 
σ

los
2 fit. This new version results tighter constrains on the smoothing 

hyperprior parameters and is computationally much faster.

FORNAX modelling: By using a King brghtness profile and a variety of 
cored and cuspy DM profiles and modelling independent of the MAD our 
best candidate  is a simple mass-follows-light model. This does not imply 
that there is no dark matter in the dSph, however  it does suggest that in a 
well mixed system, like Fornax, there is no need for a separate DM 
component that does not follows the stellar profile. 
We estimate an anisotropy profile that is tangentially biased. The tangential 
anisotropy seems to favour the scenario that Fornax is the remnant of a 
recent merger. 
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