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Introduction
Cosmology was revolutionized in the 1990s with the introduction of

likelihoods — probabilities for the data given the theoretical model— for
combining data from different surveys and performing principled infer-
ences of the cosmological parameters. Likelihood functions are easier to
write down and evaluate when things are closer to Gaussian. However,
in large-scale structure with galaxies, quasars, and quasar absorption
systems as tracers the likelihood cannot be Gaussian.

The standard approach makes the strong assumption that the likeli-
hood function for the data can be approximated by a Gaussian pseudo-
likelihood function. Fortunately, this assumption is not required. There
are principled, efficient methods such as Approximate Bayesian Com-
putation, for minimizing computation and delivering correct posterior
inferences

ABC-PMC
ABC provides a rejection sampling framework for inferring the

posterior probability distribution using only a data simulator and some
choices of summary statistics. It approximates p(~θ,X|D) by drawing
proposals ~θ from the prior over the model parameters, simulating the
data from the proposals, and then rejecting the proposals that are
beyond a certain threshold “distance” from the data. The distance
metric, in principle, can be any positive definite function that compares
the chosen summary statistics between the data and the simulation.
In practice, we use ABC in conjunction with a more efficient sampling
operation like Population Monte Carlo (PMC).
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Figure: Evolution of the ABC particles in HOD parameter space. The black stars represent the
“true” parameters of our mock observation. The parameter space of ~θt initially shrinks dramatically
until it converges to the posterior distribution of the parameters. At the final iteration, ABC has
converged and ~θtrue lies safely within the 68% confidence region.

Halo Occupation Distribution
The assumption that galaxies reside in dark matter halos is the un-

derlying bedrock of all contemporary theoretical predictions for galaxy
clustering. The HOD characterizes this galaxy-halo connection. The cen-
tral quantity in HOD is p(Ng|Mh), the probability that a halo of mass
Mh hostsNg galaxies. In the HOD model we use from Zheng et al.(2007):
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We use Halotools for our HOD forward model and for calculating
summary statistics (number density, two-point correlation function, and
group multiplicity function) of the simulated galaxy catalogs.

Results
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Figure: Comparison between the observables (ξ, left; ζg, right) predicted by the ABC-PMC posterior
(orange) and the mock observation (black). The darker and lighter shaded regions represent the 68%
and 95% confidence regions of the posterior predictions, respectively. The observables of the
ABC-PMC posteriors and mock observations are in good agreement. The error-bars of the mock
observations lie within the 68% confidence interval of the ABC-PMC posterior predictions.
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Figure: The marginalized posterior PDFs over the HOD parameter constraints from ABC-PMC
(orange) and Gaussian Likelihood MCMC (blue). The “true” HOD parameters of our mock
observations are represented with vertical black dashed line. Marginalized posterior PDFs obtained
from the two methods are consistent with each other in both accuracy and precision.
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Figure: We compare the ABC-PMC (orange) and the Gaussian likelihood MCMC (blue) predictions
of the 68% and 95% posterior confidence regions over HOD parameters using n̄g and ζg(N) as
observables. Black stars represent the “true” HOD parameters used to create the mock observations.
Both approaches are consistent with the true values.

•The standard approaches to Bayesian parameter inference in LSS
assume a Gaussian functional form for the likelihood. They are
also typically restricted to measurements such as the two point
correlation function.

•Likelihood free inferences such as Approximate Bayesian
Computation make inference possible without assuming any
functional form of the likelihood, thereby relaxing the standard
assumptions and restrictions.

•We demonstrate that ABC, with Population Monte Carlo, is
feasible for LSS parameter inference by using it to constrain
parameters of the halo occupation distribution model for
populating dark matter halos with galaxies in mock observations.

•The HOD parameter constraints from our ABC implementation
are consistent with the constraints from the standard approach
(pseudo-likelihood function of Gaussian form with MCMC).

Ultimately our results suggest that ABC can be applied in parameter
inference for LSS analyses.
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