
2. Multilevel modeling

Motivation

1. Introduction

Our project

• The dark energy equation of state:
To learn the DE-EOS—e.g., the w parameter—we need to know the Hubble parameter 
H0 to 1% accuracy or better.

• Cepheid variables:
The main H0 measurement bottleneck is the limited precision of the Cepheid variable 
period-luminosity relation (PLR), a foundation for the cosmic distance ladder.

• Goal: Improve our ability to infer Cepheid luminosities from light curve observations
• Objective: Move beyond standard PLR analyses
⁃ Explicitly model light curve diversity about the “average” PLR
⁃ Generalize the PLR to more flexible light curve-luminosity relations (LCLRs)

• Approach: Bayesian functional data analysis (FDA)
⁃ FDA: “Function demographics” (vs. demographics of scalars or multivariate vectors)—

an important emerging area of statistics
⁃ Bayesian: Probabilistic modeling of light curves as stochastic processes

3. Bayesian FDA for Cepheids
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A key notion underlying Bayesian FDA is multilevel modeling (a.k.a. hierarchical modeling 
or graphical modeling)

• Accounts for multiple sources of randomness—population diversity, measurement error…
• Grouping of data ⇒ “borrowing strength”—indirect sharing of information between 

population members

Illustrative example: Infer the number–size distribution (“log(N)–log(S)”) for a population 
of sources from noisy measurements of their fluxes.

• Population model: Gamma distribution (like Schechter function)
• Observation model: Photon counting data modeled with the Poisson distribution
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Take-aways:
• Using best-fit fluxes as surrogates for true fluxes is bad!
• Multilevel modeling implements an adaptive “Eddington bias” correction
• Joint modeling of the population and measurements:
⁃ Produces improved member estimates via shrinkage/borrowing strength
⁃ Produces population-level/demographic inferences  that account for measurement 

errors (and selection effects when necessary)

• Estimate periods from light curves via periodograms/harmonic fitting; treat as precise
• Estimate the average Cepheid magnitude,    , from light curve data 
• For Cepheids with known distance moduli, perform linear regression to estimate Leavitt law parameters
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• Model each light curve as the sum of two components (“mixed effects model”):
⁃ Shared template (“fixed effect”), governed by the Leavitt law PLR
⁃ Peculiar component (“random effect”), reflecting diversity among Cepheids with a common period

• Estimate the template PLR parameters, the peculiar component distribution, and each peculiar component jointly

Toy-model demonstration
• Generate “true” light curves for 250 Cepheids, based on the Fourier light curve fits of Pejcha and Kochanek 

(2012) and a “true” Leavitt law with (a,b) = (-4.05, -2.43)
• Simulate ~100 observations of each, using cadences and typical noise levels from various Cepheid surveys
• Estimate (a,b) with conventional regression and mixed effects approaches, using Fourier models for the template 

and peculiar components
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FDA implemented via Metropolis-within-Gibbs MCMC 
sampling, using Robust Adaptive Metropolis (RAM) and slice 
sampling algorithms

• FDA precisely and accurately recovers the PLR, separating 
template and peculiar components of light curves

• Individual Cepheid luminosity accuracy is improved via shrinkage
• Work in progress:
⁃ Multiband extension, including treatment of extinction & 

reddening
⁃ Beyond the PLR: Mining for structure amidst Cepheid 

diversity and exploiting it to improve Cepheid calibration---
building a generalized Cepheid light curve–luminosity relation
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Cepheid light curve demography

via Bayesian functional data analysis

Toward better Cepheid luminosities
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