Cepheid light curve demography via Bayesian functional data analysis Toward better Cepheid luminosities

Tom Loredo,¹ Martin Hendry,² Dan Kowal,³ and David Ruppert³ ¹Center for Radiophysics & Space Research, Cornell University; ²SUPA School of Physics & Astronomy, University of Glasgow; ³Dept. of Statistical Science, Cornell University

. Introduction

Motivation

• The dark energy equation of state:

To learn the DE-EOS—e.g., the *w* parameter—we need to know the Hubble parameter H_0 to 1% accuracy or better.

• Cepheid variables:

The main H_0 measurement bottleneck is the limited precision of the Cepheid variable period-luminosity relation (PLR), a foundation for the cosmic distance ladder.

Our project

.3. Bayesian FDA for Cepheids

Conventional Cepheid calibration

- Estimate periods from light curves via periodograms/harmonic fitting; treat as precise
- Estimate the average Cepheid magnitude, \tilde{m} , from light curve data D
- For Cepheids with known distance moduli, perform linear regression to estimate Leavitt law parameters

Leavitt law & observation model:

 $\hat{\widetilde{m}}_i = M_i + \mu_i + \epsilon_i$

Graph for conventional approach

- *Goal:* Improve our ability to infer Cepheid luminosities from light curve observations
- *Objective:* Move beyond standard PLR analyses
 - Explicitly model light curve diversity about the "average" PLR
 - Generalize the PLR to more flexible light curve-luminosity relations (LCLRs)
- *Approach:* Bayesian functional data analysis (FDA)
 - FDA: "Function demographics" (vs. demographics of scalars or multivariate vectors) an important emerging area of statistics
 - *Bayesian:* Probabilistic modeling of light curves as stochastic processes

2. Multilevel modeling '

A key notion underlying Bayesian FDA is **multilevel modeling** (a.k.a. *hierarchical modeling* or graphical modeling)

- Accounts for multiple sources of randomness—population diversity, measurement error...
- Grouping of data \Rightarrow "borrowing strength"—indirect sharing of information between population members

Illustrative example: Infer the number–size distribution ("log(N)–log(S)") for a population of sources from noisy measurements of their fluxes.

- Population model: Gamma distribution (like Schechter function) $\propto F^{\alpha-1}e^{-F/s}$
- Observation model: Photon counting data modeled with the Poisson distribution

Bayesian FDA Cepheid calibration

- Model each light curve as the sum of two components ("mixed effects model"):
 - Shared template ("fixed effect"), governed by the Leavitt law PLR
 - Peculiar component ("random effect"), reflecting diversity among Cepheids with a common period
- Estimate the template PLR parameters, the peculiar component distribution, and each peculiar component *jointly*

Toy-model demonstration

- Generate "true" light curves for 250 Cepheids, based on the Fourier light curve fits of Pejcha and Kochanek (2012) and a "true" Leavitt law with (a,b) = (-4.05, -2.43)
- Simulate ~100 observations of each, using cadences and typical noise levels from various Cepheid surveys
- Estimate (*a*,*b*) with conventional regression and mixed effects approaches, using Fourier models for the template and peculiar components

Fourier light curve model:

Light curve pop'n parameters / (template shape,

FDA implemented via Metropolis-within-Gibbs MCMC sampling, using Robust Adaptive Metropolis (RAM) and slice sampling algorithms

• Work in progress:

template and peculiar components of light curves

• Using best-fit fluxes as surrogates for true fluxes is bad!

- Multilevel modeling implements an adaptive "Eddington bias" correction • Joint modeling of the population and measurements:
 - Produces improved member estimates via shrinkage/borrowing strength
 - Produces population-level/demographic inferences that account for measurement errors (and selection effects when necessary)

- Multiband extension, including treatment of extinction & reddening - Beyond the PLR: Mining for structure amidst Cepheid diversity and exploiting it to improve Cepheid calibration--building a generalized Cepheid *light curve–luminosity relation*

• Individual Cepheid luminosity accuracy is improved via shrinkage

This work is funded by the NSF via grant AST-1312903