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1. Introduction

Motivation

® The dark energy equation of state:

To learn the DE-EOS —e.g., the w parameter —we need to know the Hubble parameter
H, to 1% accuracy or better.

* Cepheid variables:
The main H, measurement bottleneck is the limited precision of the Cepheid variable

period-luminosity relation (PLR), a foundation for the cosmic distance ladder.

Our project

® Goal: Improve our ability to infer Cepheid luminosities from light curve observations

® Objective: Move beyond standard PLR analyses

- Explicitly model light curve diversity about the “average” PLR
- Generalize the PLR to more flexible light curve-luminosity relations (LCLRS)

® Approach: Bayesian functional data analysis (FDA)
- FDA: “Function demographics” (vs. demographics of scalars or multivariate vectors) —
an important emerging area of statistics
- Bayesian: Probabilistic modeling of light curves as stochastic processes

2. Multilevel modeling

A key notion underlying Bayesian FDA 1s multilevel modeling (a.k.a. hierarchical modeling
or graphical modeling)

e Accounts for multiple sources of randomness— population diversity, measurement error...
e Grouping of data = “borrowing strength” —indirect sharing of information between
population members

Illustrative example: Infer the number-size distribution (“log(N)—log(S)”) for a population
of sources from noisy measurements of their fluxes.

e Population model: Gamma distribution (like Schechter function) o Fo—le=F/s
e (Observation model: Photon counting data modeled with the Poisson distribution
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e Using best-fit fluxes as surrogates for true fluxes is bad!
e Multilevel modeling implements an adaptive “Eddington bias™ correction
e Joint modeling of the population and measurements:
- Produces improved member estimates via shrinkage/borrowing strength
- Produces population-level/demographic inferences that account for measurement
errors (and selection effects when necessary)
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Take-aways:

3. Bayesian FDA for Cepheids

Conventional Cepheid calibration

e Estimate periods from light curves via periodograms/harmonic fitting; treat as precise
e Estimate the average Cepheid magnitude, m, from light curve data D
e For Cepheids with known distance moduli, perform linear regression to estimate Leavitt law parameters

Leavitt law & observation model: Graph for conventional approach
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Bayesian FDA Cepheid calibration

 Model each light curve as the sum of two components (“mixed effects model”):
- Shared template (“fixed effect”), governed by the Leavitt law PLR
- Peculiar component (“random effect”), reflecting diversity among Cepheids with a common period
e Estimate the template PLR parameters, the peculiar component distribution, and each peculiar component jointly

Toy-model demonstration

e Generate “true” light curves for 250 Cepheids, based on the Fourier light curve fits of Pejcha and Kochanek
(2012) and a “true” Leavitt law with (a,b) = (-4.03, -2.43)

e Simulate ~100 observations of each, using cadences and typical noise levels from various Cepheid surveys

e Estimate (a,b) with conventional regression and mixed effects approaches, using Fourier models for the template
and peculiar components
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