
Over two decades of astronomic and radial velocity data of stars at the Galactic center, has the potential to provide unprecedented 
tests of General Relativity and insight into the astrophysics of the super-massive black hole.  Fundamental to this is understanding the 
underlying statistical issues of fitting stellar orbits.  Reference frame effects and unintended prior effects can obscure actual physical 
effects from General Relativity and underlying extended mass distribution.  At the heart of this is dealing with large parameter spaces 
inherent to multi-star fitting and ensuring acceptable coverage properties of the resulting confidence intervals in the Bayesian 
framework.   This poster will detail some of the UCLA's group analysis and work in addressing these statistical issues.

Statistical Challenges in fitting stellar orbits around the 
super-massive black hole at the Galactic center.

Given an hypothetical dataset of infinite masers 
such that it produces the “true” reference frame, 
our 7 maser dataset represents a mere subset 
that produces a statically biases reference frame. 
 Using our “Drop One Maser” result we can 
estimate this bias through jack knifing.

Given Posteriors showing the 
dynamical velocity of Sgr A inferred 
from stellar orbits.  Color lines 
represent the posteriors inferred 
from orbits of S0-2 and S0-38.  The 
solid represents the uncertainties 
from the jack knife.

Estimating systemic uncertainties in the 
reference frame

Jack Knife
Uncertainties

S0-2 S0-38 S0-2+S0-38
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Much of our discrepancies 
are alleviated with the 
inclusion of our jack knife 
results indicating a large 
amount of our systematics 
come from unaccounted for 
reference frame statistical 
errors.

Next generation reference frame 
construction techniques will directly 
incorporate these errors through a 
global likelihood analysis..
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Statistical Coverage Analysis of Stellar 
Orbital Fitting at the Galactic Center
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Blue dot: uniform priors
Green triangle:  Priors uniform in X, Y,  

                        log(Ro) and log(M); 
Red X: Priors uniform in X, Y                    

       (astrometry), Vz (RV), log(M)

Test 1: Actual sampling
Test 2: Even phase coverage in theta
Test 3: Lower partial phase coverage, standard
Test 4: Lower partial phase coverage, increased RV error
Test 5: Lower partial phase coverage, decreased frequency of RV data
Test 6: Upper partial phase coverage, standard 
Test 7: Upper partial phase coverage, increased RV error
Test 8: Upper partial phase coverage, decreased frequency of RV data
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Although the confidence levels of data sets with low phase seem to be 
helped using our observable-based priors, it is instructive to analyze 
the bias on the quoted central value.  Plot below are the bias defined 
to be the number of times the 'true' is above the median (or posterior 
peak).   Compared are the assumed true values and the median (or 
posterior peak) that is inferred from a randomly drawn mock data 
sets.  

The reference frame is built by 
comparing the infrared and radio 
positions of seven SiO masers 
found in the GC and minimizing the 
difference between the two sets of 
measurements. This approach 
should put Sgr A* at rest. When 
fitting stellar orbits, we allow Sgr 
A*’s velocity as a free parameter. 
Any non-zero velocity indicates 
systematic errors in the reference 
frame.  This often leads measured 
orbits not closing which can be 
confused as actual physics! 

It is not unreasonable to expect data sets with incomplete orbital 
phase coverage to not produce accurate confidence intervals. Shown 
below are the Statistical efficiencies of various Bayesian confidence 
intervals. The efficiencies are calculated from 100 mock data sets 
assuming an reasonable set of 'true' parameters.  Plotted is the ratio of 
the fraction of confidence intervals that cover the assumed true value 
as compared to the defined confidence level.  An efficiency of 1 
denotes exact coverage whereas an value >1 or <1 overcovers or 
undercovers respectively.  We compare confidence intervals derived 
using three priors:  uniform priors and two different priors uniform in 
the observable (not model) parameter space.
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Uniform priors
Prior uniform in 

astrometric 
observables

Prior uniform in 
astrometric and RV 

observables

Inferred median or 
posterior peak values 
seem to be consistently 
biased when compared to 
the true value – an effect 
not alleviated by our 
observable-based priors.  
Although, as shown right, 
these priors help reduce 
the magnitude of this 
effect.  To the right is the 
frequency of the amount 
the median is biased 
relative to the assumed 
'true' value assuming 
various priors.  
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“Drop One Maser” Test:  Black 
Hole parameters estimated using 
all seven masers are shown in 
red.  We then carry out the same 
exercise by excluding one maser 
at a time.  Seven blue circles in 
each panel show the results from 
the seven ‘drop one maser’ 
iterations.
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