Data Mining in Nearby Galaxies

We stern

UNIVERSITY

: : o University
S. Rahmani', H. Teimoorinia®, E. Peeters'>*, P. Barmby"- of Victoria

1 2
Department of PhysBics and Astronomy, Western University, London, Ontario; Department of Physics and4Astronomy, University of Victoria, Victoria, British Columbia;
Centre for Planetary Science and Exploration, Western University, London, Ontario; SETI Institute, Mountain View, California

2D SOMs (subsets)
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