

Dootika Vats (vatsx007@umn.edu), Galin Jones UNIVERSITY OF MINNESOTA SCHOOL OF STATISTICS

Markov Chain Monte Carlo

Let F be a probability density and g be a function on \mathbb{R}^p , so that $\theta = E_F g$ is of interest. We construct a Harris ergodic Markov chain $\{X_1, X_2, X_3, \dots\}$ with invariant distribution *F* and θ is estimated by

$$\theta_n = \frac{1}{n} \sum_{t=1}^n g_t,$$

where $g_t = g(X_t)$. Under certain conditions, a Markov chain CLT of the following form exists

$$\sqrt{n}(\theta_n - \theta) \xrightarrow{d} N_p(0, \Sigma).$$

Goal: Estimate Σ consistently.

Multivariate Batch Means

Let $n = a_n b_n$, where $a_n =$ number of batches, and $b_n =$ batch size. We find the mean of batch k, \overline{Y}_k .

$$\underbrace{\underbrace{g_1,\ldots,g_{b_n}}_{\bar{Y}_1}, \underbrace{g_{b_n+1},\ldots,g_{2b_n}}_{\bar{Y}_2}, \ldots, \underbrace{g_{n-b_n+1},\ldots,g_n}_{\bar{Y}_{a_n}}}_{\bar{Y}_{a_n}}$$

The *multivariate batch means* (mBM) estimator is defined as

$$\Sigma_n = \frac{b_n}{a_n - 1} \sum_{k=1}^{a_n} (\bar{Y}_k - \theta_n) (\bar{Y}_k - \theta_n)^T.$$

In [1], we show that Σ_n is strongly consistent under conditions on the Markov chain, b_n and g.

Stopping Rules

Using Σ_n we obtain the $100(1 - \alpha)\%$ confidence region for θ

$$R_{\alpha,n} = \left\{ \theta \in \mathbb{R}^p : n(\theta_n - \theta)^T \Sigma_n^{-1}(\theta_n - \theta) \le T_{\alpha,p,a_n-1}^2 \right\}.$$

The relative standard deviation fixed volume sequential stopping rule stops simulation the first time

$$\operatorname{Vol}(R_{\alpha,n})^{1/p} + \epsilon |\Lambda_n|^{1/2p} I(n < n^*) + n^{-1} \le \epsilon |\Lambda_n|^{1/2p}$$

where n^* is the minimum simulation effort, Λ_n is the sample covariance matrix of g_t , ϵ is the tolerance level.

The resulting confidence regions are asymptotically valid. We show that this termination rule is asymptotically equivalent to terminating using effective sample size.

Multivariate Effective Sample Size (ESS)

ESS is the number of iid samples with the same standard error as this sample. Only a univariate definition of ESS exists, and thus ESS is calculated for *each* component separately. Let $| \cdot |$ be the determinant, $\Lambda = \operatorname{Var}_F g(X_1)$, and λ_i^2, σ_i^2 be the *i*th diagonal of Λ and Σ

Univariate

Multivariate Extension

 $\text{ESS}_i = n \frac{\lambda_i^2}{\sigma_i^2} \qquad \text{mESS} = n \left(\frac{|\Lambda|}{|\Sigma|}\right)^{1/p}$

References

[1] Dootika Vats, James M Flegal, and Galin L Jones. Multivariate output analysis for Markov chain Monte Carlo. *arXiv*:1512.07713, 2015.

Output Analysis for High-Dimensional Markov Chain Monte Carlo

$$\geq \frac{2^{2/p}\pi}{(p\Gamma(p/2))^{2/p}} \frac{\chi^2_{1-\alpha,p}}{\epsilon^2}$$

	Sample Size	mESS	ESS_1	ESS_2	ESS_3	ESS_4	ES
nivari-	10^{5}	6209	6796	5164	6152	6323	47