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Markov Chain Monte Carlo

Let F' be a probability density and g be a function on R?, so that = Stopping the first time that
0 = Erg is of interest. We construct a Harris ergodic Markov chain Vol( Ra,n)l/p € An\l/ PI(n<n*)4+n"t <¢ An\l/ 2p

{ X1, X2, X3, ...} with invariant distribution F' and 6 is estimated by , , , ,
is asymptotically equivalent to stopping when
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This lower bound is only a function of the dimension of the problem p, the tolerance level € and the desired confidence level.

where g; = g(X;). Under certain conditions, a Markov chain CLT of the S

following form exists Example: To achieve Monte Carlo error of at most 5% of the posterior standard deviation with 95% confidence for p = 5 we need mESS > 8605.
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Vilfn = 0) = Ny(0,%). UM Example: Bayesian Logistics Regression

Goal: Estimate X consistently. Consider the 1ogit dataset in the R package mcmc. The response is binary with four covariates and 100 observations. We fit the following Bayesian

logistic regression model. For¢ =1,...,100

Multivariate Batch Means ,
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Let n = a,,b,,, where a,, = number of batches, and b,, = batch size. We Yi|x;, 8 ~ Bernoulli (1 N e—w-TB> , and 3~ N5(0,I5) Posterior: f(8|y) o (H = e”TB) e~2P P isintractable
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find the mean of batch &, Yx.

Goal is to estimate posterior mean § = Er (3. We implement a random walk Metropolis-Hastings algorithm with proposal distribution N5(0, .3575).
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1 2 " Example: Confidence Regions and Termination
The multivariate batch means (mBM) estimator is defined as The autocorrelation plot shows significant autocorrelation for 3;. This autocorrelation is captured by both univariate and multivariate methods.
: o The cross-correlation plot of 5; and 83 shows the correlation ignored by univariate methods and captured by multivariate methods.
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In [1], we show that 3., is strongly consistent under conditions on the ; ] g - mBM 0.880 00103  0.020 (1.200-05 8 _
Markov chain, b,, and g. < 5 2 )
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Stopplng Rules (l) 1|O 2|0 3|O 4|0 5|0 —él‘rO —.|20 (l) 2|0 4|0 S' .
Using ¥, we obtain the 100(1 — «)% confidence region for 6 = - 90% confidence regions for 5 when n = 10> over 1000 “
replications.
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The relative standard deviation fixed volume sequential stopping rule
stops simulation the first time
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where n* is the minimum simulation effort, A,, is the sample covariance — mBM -~ uBM-Bomn UBM

matrix of ¢, € is the tolerance level. , o , , , , , ,
It We compare 90% confidence ellipsoids obtained through the mBM with the Bonferroni corrected and uncorrected confidence cuboids obtained

The resulting confidence regions are asymptotically valid. We show ' ' through univariate batch means. Termination is earlier using mBM because of

that this termination rule is asymptotically equivalent to terminating

using effective sample size. e accounting for the multivariate nature of the samples, Sample Size | mESS | ESS; ESS, ESS; ESS; ESSs
e conservative behavior of the Bonferroni correction,

Multivariate Effective S ample Size (ESS) e the additional conservative step of choosing the smallest univari- 105 6209 | 6796 5164 6152 6323 4781
ate effective sample size.

ESS is the number of iid samples with the same standard error as this

Celctlated for each component separately. Let | . | be the determirant
calculated for each component separately. Let | - | be the determinant, Conclusion

A = Varpg(X1), and A7, o7 be the ith diagonal of A and ¥ e MCMC samples are inherently multivariate, and thus their treatment should be multivariate whenever possible.
Univariate Multivariate Extension e Uncorrected confidence regions have bad coverage probabilities.
2 A\ /P e Similar/better results were seen in more complicated models including Bayesian Lasso, Bayesian dynamic spatial temporal models.
ESS: = no'_? mESS =n (@) e R package mcmcse includes mBM estimator, multivariate spectral variance estimator, and mESS estimator.
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