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Abstract
Regression analysis on astrophysical data is a relatively challenging activity and it has long been recognized that many of the assumptions of
ordinary least squares regression (OLS) are not valid in several applications in the field. Accordingly, various techniques from the domains of
frequentist statistics and Bayesian probability theory have been proposed to address the shortcomings of OLS. We here present a new regression
method called ‘geodesic least squares regression’ (GLS), which has recently been developed and applied in the field of magnetic confinement
fusion (MCF) [1,2]. The main difference with standard techniques is that, for the case of a single response variable, the distribution of the
response conditional on a value suggested by the regression model (‘modeled distribution’), need not be the same as its distribution conditional
on an actual measurement (‘observed distribution’). Then, instead of minimizing the difference between modeled and observed values of the
response variable, which is the goal of standard OLS, GLS aims at minimizing the distance between the modeled and observed distributions. To
this end, we use the Rao geodesic distance (GD) on the probabilistic manifold corresponding to the distribution in the regression model,
equipped with the Fisher information metric. The method can handle errors in all variables, is robust against data outliers and uncertainty in the
regression model, and can be used with arbitrary distribution models and regression functions. After introducing GLS and demonstrating its
advantages on a synthetic data set, we show results of fitting MCF scaling laws as well as the baryonic Tully-Fisher relation in astronomy.

Motivation
• In many areas of science, regression analysis is used:

 As an aid to build and validate theoretical models from data and to find parametric dependencies
 As a statistical tool to formulate scaling laws for the purpose of extrapolation

• Ordinary least squares regression (OLS) is the workhorse
• Often, multiple assumptions underlying OLS are not fulfilled
• There may be various reasons:

 Considerable measurement uncertainty: statistical and systematic
 Uncertainty on response (dependent, 𝑦) and predictor (independent, 𝑥𝑗) variables

 Model uncertainty: linear, power law, semi-empirical, …

Power law: 𝑦 = 𝑏0𝑥1
𝑏1𝑥2

𝑏2 …𝑥𝑚
𝑏𝑚

 Heterogeneous data and error bars, correlations, non-Gaussian probability distributions
 Atypical observations (outliers)
 Near-collinearity of predictor variables
 Data transformations, e.g.

log 𝑦 = log 𝑏0 + 𝑏1 log 𝑥1 +…+ 𝑏𝑚 log 𝑥𝑚
• Inferior regression analysis counteracts other efforts!
• A flexible, robust and user-friendly regression tool is needed

Geodesic least squares regression (GLS)

OLS GLS
Formulate model with parameters  𝜃 = 𝜃1, … , 𝜃𝑝

T
: 

𝑦 = 𝑓 𝑥1, … , 𝑥𝑚  𝜃

Take 𝑛 measurements 𝑦𝑖 and  𝑥𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑚
T

Minimize error

Least squares estimation

  𝜃 = argmin
𝜃
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Maximum likelihood estimation (MLE)
(e.g. Gaussian likelihood)

  𝜃 = argmax
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Modeled distribution
(e.g. Gaussian)
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𝜎mod includes uncertainty on 𝑦 and 𝑓  𝑥𝑖  𝜃

Zero error 
on the 
𝑥𝑖𝑗!

Includes 
errors on 
the 𝑥𝑖𝑗!

Observed distribution
(e.g. Gaussian)
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𝜎obs to be estimated from the data

Minimize 
distanceor

Which distance measure between 
probability distributions?

Information geometry

• Geometric approach to probability theory [3]
• A family of probability density functions (PDFs)

forms a metric space,
or manifold

• Fisher information is the
metric tensor

• Rao geodesic distance (GD)
is the shortest distance
between points (PDFs)

• 𝑝1(𝑥|𝜇1, 𝜎1) 𝑝2(𝑥|𝜇2, 𝜎2)

• GD 𝑝1, 𝑝2 = 2 2tanh−1𝛿,

𝛿 =
𝜇1−𝜇2

2 + 2 𝜎1−𝜎2
2

𝜇1−𝜇2
2 + 2 𝜎1+𝜎2
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• The pseudosphere (tractroid) is a model
for the manifold of univariate Gaussian
distributions, respecting the
true geometry (𝜇 in red, 𝜎 in blue)

Intuitively, the Gaussians
𝑝3 𝑥 4, 4.02 and 𝑝4 𝑥 16, 5.02

are closer (more overlap) than
𝑝1 𝑥 4, 1.22 and 𝑝2 𝑥 16, 1.52 ,
although the respective means are
the same. The reason is that 𝜎
does not behave like a Euclidean
coordinate.
Indeed, GD 𝑝3, 𝑝4 = 2.4 < GD 𝑝1, 𝑝2 = 5.3, whereas with the
Euclidean distance ED 𝑝3, 𝑝4 = 12.04 > ED 𝑝1, 𝑝2 =12.00. The
distributions are mapped on the pseudosphere on the left.

Fisher information

metric

𝑔𝑖𝑗  𝜃 = −𝔼
𝜕2 ln 𝑝  𝑥  𝜃

𝜕𝜃𝑖𝜕𝜃𝑗

Geodesics
and

geodesic distance 
(GD)

Manifold with
coordinates 

𝜃1, … , 𝜃𝑝

Example: Gaussian manifold

Baryonic Tully-Fisher relation in astronomy

Conclusion

• Geodesic least squares regression is flexible and robust
• GLS is simple but powerful due to strong mathematical

foundations
• GLS offers unified solution to various regression problems
• Probability distributions more informative for regression
• Loglinear regression can be biased w.r.t. nonlinear analysis
• Future development: more accurate error bars on GLS

estimates and predictions
• GLS will be implemented in a public software package
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Scaling in magnetic confinement fusion

2. Synthetic data: logarithmic space

1. Synthetic data: outliers

• Logarithmic transformation:

𝜂 = log 𝛽0 + 𝛽1 log  𝑛e + 𝛽2 log 𝐵t + 𝛽3 log 𝑆

• Gaussian noise: 20% on  𝑛e, 5% on 𝐵t, 15% on 𝑆,
15% on 𝑃thr

• Artificial data sets:

H-mode power threshold

• Controlled nuclear fusion: clean, safe, limitless energy
• Magnetic confinement fusion: tokamaks (ITER), stellarators, …
• High confinement mode (H-mode): threshold 𝑃thr on input power

• Scaling with classic power law:

• ITPA H-mode threshold database [4]: 645 measurements from 7 tokamaks
• Logarithmic variables assumed Gaussian: single standard deviation

= relative error from database

𝑃thr = 𝛽0  𝑛e
𝛽1𝐵t

𝛽2𝑆𝛽3 ,  

 𝑛e = average plasma density (1019 m−3)
𝐵t = toroidal magnetic field (T)

𝑆 = plasma surface area (m2)

 
𝛽0 = 1, 1.1,… , 20
𝛽1, 𝛽2, 𝛽3 = 0.1, 0.2,… , 2

• Linear regression: 𝜂 = 𝛽0 + 𝛽1  𝑛e + 𝛽2𝐵t + 𝛽3𝑆

• Gaussian noise: 4% on  𝑛e, 1% on 𝐵t, 3% on 𝑆,
15% on 𝑃thr

Method 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝑷thr,𝟎.𝟓
(MW)

GLS
𝟎. 𝟎𝟒𝟑
±0.004

𝟎. 𝟔𝟔
±0.07

𝟎. 𝟖𝟎
±0.06

𝟎. 𝟗𝟓
±0.03

𝟒𝟖 ± 5

OLS
𝟎. 𝟎𝟓𝟏
±0.006

𝟎. 𝟒𝟗
±0.07

𝟎. 𝟖𝟕
±0.06

𝟎. 𝟖𝟒
±0.04

𝟑𝟖 ± 4

MAP
0.045
±0.005

0.57
±0.08

0.87
±0.07

0.90
±0.04

46 ± 5

3. Real data: comparison of loglinear with nonlinear

Loglinear Nonlinear

Method 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝑷thr,𝟎.𝟓
(MW)

GLS
𝟎. 𝟎𝟒𝟎
±0.004

𝟎. 𝟕𝟐
±0.07

𝟎. 𝟕𝟓
±0.08

𝟎. 𝟗𝟖
±0.03

𝟓𝟐 ± 4

OLS
𝟎. 𝟎𝟐𝟕
±0.008

𝟎. 𝟕𝟕
±0.09

𝟏. 𝟎
±0.1

𝟏. 𝟎𝟒
±0.07

𝟕𝟎 ± 20

MAP
0.046
±0.004

0.64
±0.07

0.79
±0.08

0.93
±0.03

44 ±4

• Relation between rotational velocity and baryonic mass of galaxies
• Various purposes:
• Distance indicator
• Constraints on galaxy formation models
• Test for alternatives to ΛCDM (e.g. MOND) via slope and scatter

𝑀b = 𝛽0 𝑉f
𝛽1  

𝑉f = rotational velocity in flat part of rotation curve (km s−1)

𝑀b = 𝑀∗ +𝑀gas = total baryonic mass (𝑀⊙)

𝛽0, 𝛽1 = constants

10 bootstraps, 95% conf. interv.10 bootstraps, 95% conf. interv.

• Data from McGaugh [5] (gas-rich galaxies)

Method 𝜷𝟎 𝜷𝟏

OLS loglin.
𝟑𝟕𝟎
±400

𝟑. 𝟓𝟔
±0.29

OLS nonlin.
𝟐 × 𝟏𝟎𝟑

±8 × 103
𝟒. 𝟔
±𝟐. 𝟕

GLS loglin.
𝟏𝟒𝟎
±150

𝟑. 𝟖𝟎
±0.28

GLS nonlin.
𝟏𝟏𝟎
±220

𝟑. 𝟖𝟐
±𝟎. 𝟑𝟒

100 bootstraps, 95% conf. interv.

NonlinearLoglinear

• Compare with least trimmed squares (LTS) [6,7]

Loglinear Nonlinear

NGC 3198

ITER construction site in Southern France

Scale model of ITER with cutaway


