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Abstract Scaling in magnetic confinement fusion

Regression analysis on astrophysical data is a relatively challenging activity and it has long been recognized that many of the assumptions of
ordinary least squares regression (OLS) are not valid in several applications in the field. Accordingly, various techniques from the domains of H-mode power threshold
frequentist statistics and Bayesian probability theory have been proposed to address the shortcomings of OLS. We here present a new regression . o
* Controlled nuclear fusion: clean, safe, limitless energy

method called ‘geodesic least squares regression’ (GLS), which has recently been developed and applied in the field of magnetic confinement
fusion (MCF) [1,2]. The main difference with standard techniques is that, for the case of a single response variable, the distribution of the * Magnetic confinement fusion: tokamaks (ITER), stellarators, ...

response conditional on a vaI{ue suggestgd by th.e rclegression.model (’moqle‘leo.l <.:Iistributic.)n’), need not be the same as its distribution conditional ~ High confinement mode (H-mode): threshold Pth on input power

on an actual measurement (‘observed distribution’). Then, instead of minimizing the difference between modeled and observed values of the r

response variable, which is the goal of standard OLS, GLS aims at minimizing the distance between the modeled and observed distributions. To ° Scaling with classic power law:

this end, we use the Rao geodesic distance (GD) on the probabilistic manifold corresponding to the distribution in the regression model, (_ 1 d : 1019 —3 ‘

equipped with the Fisher information metric. The method can handle errors in all variables, is robust against data outliers and uncertainty in the B g = EVETEZE DIESITE ClEmailsy ( m )
Pihr = BoTte' By 25Bs, Bt = toroidal magnetic field (T)

regression model, and can be used with arbitrary distribution models and regression functions. After introducing GLS and demonstrating its
advantages on a synthetic data set, we show results of fitting MCF scaling laws as well as the baryonic Tully-Fisher relation in astronomy. S = plasma surface area (mz)

\
ITPA H-mode threshold database [4]: 645 measurements from 7 tokamaks

Logarithmic variables assumed Gaussian: single standard deviation

M OtivatiO N = relative error from database

1. Synthetic data: outliers
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In many areas of science, regression analysis is used:
= As an aid to build and validate theoretical models from data and to find parametric dependencies

= As a statistical tool to formulate scaling laws for the purpose of extrapolation

Ordinary least squares regression (OLS) is the workhorse . . - {pp=1,11,...,20 Relative error (%) Relative error (%)
Often, multiple assumptions underlying OLS are not fulfilled Artificial data sets: Bi, B2, B3 =0.1,0.2, ..., 2 & ' s

There may be various reasons: * Gaussian noise: 4% on 7le, 1% on By, 3% on S,
= Considerable measurement uncertainty: statistical and systematic 15% on Py I
20 40 60 5 10 ;5

Uncertainty on response (dependent, y) and predictor (independent, x;) variables
Relative error (%) Relative error (%)

Model uncertainty: linear, power law, semi-empirical, ... 5, . 5,
by b b _ : : : : :
Power law: y = boxllxzz X 2. Synthetic data: logarithmic space

Heterogeneous data and error bars, correlations, non-Gaussian probability distributions : : .
Atvpical ob t' (outliers) * Logarithmic transformation:
ypical observations (outliers _

77 = log ﬁo + ﬁl log ne + ﬁz log Bt + ﬁB log S :glativeerror(;o) Iiglativeerror(zg

Near-collinearity of predictor variables | :
Data transformations, e.g. ) | _§>— ® Gaussian noise: 20% on ng, 5% on Bt, 15% on S, 2
logy =logby + by logx; + ...+ b, log x,,, 15% on Py
* Inferior regression analysis counteracts other efforts! NN e oo e e,
* A flexible, robust and user-friendly regression tool is needed 3. Real data: comparison of loglinear with nonlinear I Rlae”%) 5

Loglinear Nonlinear

10 bootstraps, 95% conf. interv.
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° Linearregression:n = [y + fiNe + [,Bt + (35
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10 bootstraps, 95% conf. interv.

ﬁl BZ BS Pthr,0.5 ﬁl BZ BS Pthr,()_s
(MW) (MW)

GeOdeS|C |eaSt Squares regreSSIOn (GLS) 0.043  0.66 0.80 0.95 o . 0.040  0.72 0.75 0eE o

+0.004  +0.07 +0.06 +0.03 +0.004  +0.07 +0.08 +0.03

0.051 0.49 0.87 0.84 0.027 0.77 1.0 1.04 70 + 20

: > T
—) Formulate model with parameters@z[@l,...,ep]: OLS 10.006 4007 +0.06  +0.04 T +0.008 4009 401 +0.07

v = f(x1, -, X |6) | 0.045  0.57 0.87 0.90 0.046  0.64 0.79 0.93 4 +a
+0.005  +0.08  +0.07  +0.04 - +0.004  +0.07  +0.08  +0.03 -

Includes
errors on
the lel

Modeled distribution
(e.g. Gaussian)

n N
6 = argmin Y [y; - £(l0)] Pmod (V| -, 6) =m; exp{—%zwﬂ} * Relation between rotational velocity and baryonic mass of galaxies
¢ = mod = * Various purposes:
0 mod includes uncertainty on y and f(fl|§) [ Dista nce indicator
® Constraints on galaxy formation models

'\(;'I'SZ;TI'CZ: ' * Test for alternatives to ACDM (e.g. MOND) via slope and scatter |
p NGC 3198

( _ . e . _1
Observed distribution Ve = rotational velocity in flat part of rotation curve (km s™")

Maximum likelihood estimation (MLE) (e.g. Gaussian) Mb — ﬁO Vfﬁl ) Mb =M, + Mgas = total baryonic mass (MG))

(e.g. Gaussian likelihood) 1 1 .

. ! 10 [y - £E1O)) M eontis) == exp{“ \Bo, p1 = constants
xp _Ez o2

i=1

2 2
0 = arg max i
Tobs to be estimated from the data * Data from McGaugh [5] (gas-rich galaxies) * Compare with least trimmed squares (LTS) [6,7]

= Yobs
6 21O
X 1010

Least squares estimation

mod

¢ Data = [ Data 10 ;ggdeledd(?égg: ca. 38%
——OLLiER Lol = SLEG L —OLS: log;p0.063 + 5.37logVj| = = oo

—GLS: log;,79 + 3.83 logV;

10
Which distance measure between -~ 107 _LTS: 1ogyy97 + 3.85logV;

. . . . —GLS: log;111 4 3.81logVt
probability distributions? : 10°
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Loglinear Nonlinear

107

10° | ‘
10 50 100
Vf (km S_l)

100 bootstraps, 95% conf. interv.

Geometric approach to probability theory [3] | ) mm Loglinear Nonlinear

A family of probability density functions (PDFs) | 370 3 56
. - " OLS loglin. '
forms a metric space, +400 +0.29

or manifold o oLs nonlin. R 103 4.6
: - - : . Fisher information B +8 x 103 +2.7
Fisher information is the Besrades
metric . 140 3.80
_ GLS loglin.

metric tensor and
T geodesic distance , 92 1Inp(%|6) +150 +0.28
Rao geodesic distance (GD) (GD) 9i;(8) = —E [ 1o 2 o

is the sh di 00,00, T Manifold with GLS nonlin.
IS the shortest distance / ) \ +220 +0.34
coordinates

between points (PDFs) s 6,

|
Ex le: Gaussi ifold .
 Example: Gaussian manifold Conclusion References
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P1 (X|/,ll, 0-1) <-——> P2 (x|liz: 0-2) | Why a geodesic distance?
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e GD = 2+/2tanh~ 1§ . o .
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= + 2(01—0 Al . . .
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- does; notjbetiavetlikeRatECLe N | - Probability distributions more informative for regression Int. Conf. Lyon), IAEA, Vienna, CT/P-04.

distributions, respecting the coordinate
' - - . . . 5] S. McGaugh, Astron. J. 143, 40, 2012.
\ O E ) A T ) — L s witly i Loglinear regression can be biased w.r.t. nonlinear analysis {6} y Cgp?)i_ﬁa’ri est 2” o e e e

true geometry (i in red, g in blue) MY A\ Euclidean distance ED(ps, ps) = 12.04 > ED(py, p,) =12.00. The .
Ny A - distributions are mapped on the pseudosphere on the left. Future development' more accurate error bars on GLS 432, 1709, 2013.
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GLS will be implemented in a public software package | 533:?;’;; and Outlier Detection, Wiley, New
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