Sparse Composite Models of Galaxy Spectra
(or Anything)
using L1 Norm Regularization
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Inference of mass, redshift, etc. from physical models

Many astrophysical problems require fitting complex physical models
to a limited set of observables, where the model parameters can be
either the object of study or nuisance parameters. The parameter
space is large and the generating process is typically non-linear and
expensive.

For a galaxy’s stellar mass, redshift, star formation history, dust mass,

etc., the usual approach is to take a very large set of possible

models, e.qg. star formation histories, generate stellar populations and

thence colors from each model, and fit the models one at a time to the

observed flux data, scaling in brightness (and sometimes dust

extinction) only. This process has several problems:

- galaxies are intrinsically composite,

- systematics due to template mismatch,

- limited model space due to imposed forms of SF history, dust
models, etc.



Galaxy dust mass from modeling far-infrared emission
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Models: 240 physically motivated dus
model spectra, generated by differen
mixtures of radiation intensity, dus
composition, etc (Draine & Li 2007
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spectra (Rieke et al 2009), which

1 we “observe” at 8, 24, 70, 100,
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Fitting dust models one-at-a-time to simulated observations
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Red line is best fit of the 240 Draine & Li dust models (t
composites of a “diffuse” and “hot” component) to blac
errors. Normalization -> dust mass (eg Magdis et al 201
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012). Problems:

Best fit still isn’t very good.

- Marginalizing over probability of each model is thus bogus.
- Marginalization and Monte Carlo realizations of error stick to a few models,

and so underestimate the parameter uncertainties.



Lack of dlverS|ty in best-fit single model SEDs
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Despite the seeming variety of 240 model SEDs, in the Monte
Carlo realizations of 14 different far-IR spectra with 10% errors,
nearly all of the best fits use only the 10 most common models.



How to fit linear combinations of models without going crazy
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Real galaxies are composites. A linear combination of models spans
observable space better than one-at-a-time models, but combinations
of 10s to 100s of models are highly degenerate. Applying an L1-norm
penalty makes the fit sparse by keeping many coefficients at zero.
(see LASSO, e.g. R. Tibshirani 1996, M. Schmidt 2005)



Fitting composite dust models with L1 regularization
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Blue lines are the fitted components. From an input set of the 9 most

popular Draine & Li models, the L1-penalized fit left 6 at zero, and fit the

data with only 3 components. Remaining issues:

- Qverfitting: shallow minimum / fits are degenerate.

- This causes MC realizations to again underestimate the error on mass.

- Solution can be sensitive to the minimization algorithm; need to explore
the acceptable region, e.g. with MCMC.
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Composite models fit the data better, but their real value is
showing the larger parameter space allowed by the data
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The best-single-fit and composite models find similar trends of dust mass
with far-IR luminosity, but with an offset. The offset is not huge, but is
grossly larger than the conventional method of error estimate on the best-
fits, because galaxies are not well described by single models (even
though these DL models are already mixtures of diffuse+hot components).
The L1 regularization method is generally applicable to any data that is the
sum of complex, physically meaningful models.



Thanks to David Hogg for suggesting the L1-norm as a technique to enforce
sparsity, and George Rieke for discussions on infrared spectra and dust models.
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