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Cosmic Shear

The lensing by large scale structure

Looking for very small signal under very large
amount of noise

We don’t know “unsheared” shapes, but can
(roughly) assume they are isotropically
distributed

Cosmic shear distorts statistical isotropy;
galaxy ellipticities become correlated

Exquisite probe of DE, if systematics can be
controlled

LSST: will measure few billion galaxy
ellipticities. Excellent sensitivity to both DE
and systematics!

LSST weak lensing

Cosmic shear
signal is
comparable

to ellipticity of
the Earth, ~0.3%

- D. Wittman
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The Large Synoptic Survey Telescope (LSST) is a driver for many
statistics and computing innovations in the next decade

8.4m telescope 18,000+ deg? 10mas astrometry r<24.5 (<27.5@10yr)
6 broad optical bands (ugrizy) 0.5-1% photometry

0O 50 100 150 200
visits: r

3.2Gpix camera 2x15sec exp/2sec read 15TB/night 20 B objects

Imaging the visible sky, once every 3 days, for 10 years (825 revisits)
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Cosmic shear today: Stage Il dark energy
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We won’t just have more data with ‘Stage IV’ surveys.
- We’re in an era with qualitatively new computing capabilities

Dijkstra’s Law

A quantitative difference is also a qualitative
difference if the quantitative difference is greater
than an order of magnitude.

Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore's Law
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Qualitative changes in computing enable new scientific methods

“...predictive simulation has brought together theory and
experiment in such a compelling way that it’s
fundamentally extended the scientific method for the first
time since Galileo Galilei invented the telescope in 1609...”

- Mark Seager, CTO for the HPC Ecosystem at Intel

(interview in Inside HPC on June 6, 2016)
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Data + Compute convergence in cosmology
— DOE ASCR initiative, April 2016

= We're facing systematics-limited measurements
End-to-end simulations of the experiment are the best approach to improve accuracy &

precision
Ties data and simulation more intricately than in past cosmology pipelines

= |Image and catalog summary statistics are no longer good enough to meet next

generation science requirements
— Probabilistic hierarchical models and related machine-learning approaches show promise

but are much more computationally intensive
— Potential changes to the traditional ‘facility’ / ‘user’ separate analysis stages

Removing the line between ‘analysis’ and ‘simulation’.
NOYSE 7
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Weak lensing of galaxies: the forward model

Galaxies: Intrinsic galaxy shapes to measured image: Image credit: GREATO08, Bridle et al.
Intrinsic galaxy Gravitational lensing] |Atmosphere and telescope  Detectors measure Image also Margina”ze
(shape unknown) causes a shear (g) cause a convolution a pixelated image contains noise

Want this

Stars: Point sources to star images:

.-).-)

Constrained by

-

Intrinsic star Atmosphere and telescope  Detectors measure Image also

(point source) cause a convolution a pixelated image contains noise
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45000 Fit same image with different noise realizations

(("I‘) = 0.2953 £+ 0.0002|e; = 0.3 SNR =20
. . 40000 Aeq = 0.0047
Shape to Shear: Noise Bias 35000
30000
25000
= Ellipticity: e= —— b exp(2i0) " 20000
: a+b p 15000
10000
= Ensemble average ellipticity is an 5000
unbiased estimator of shear. =52 00 02 04 06 08
measured ellipticity e,
- However maximum Ilk@llhOOd 0.020 noise bias as function of signal-to-noise
, Y
ellipticity in a model fit is not 3 o1 ;
unbiased. ]
i§ 0.010
= Ellipticity is a non-linear function of 3
pixel values. § 0005 : LSST requirement
" 0.000 20 40 80 200

signal-to-noise ratio
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Mitigating Noise Bias — at least 2 strategies

1. Calibrate using simulations. (im3shape, sfit)

— But corrections are up to 50x larger than expected sensitivity!

2. Propagate entire ellipticity distribution function P(ellip | data).

— Use Bayes’ theorem: P(ellip | data) ©€ P(data | ellip) P(ellip)

— Measure P(ellip) in deep fields. (lensfit, ngmix, FDNT).

— Infer simultaneously with shear in a hierarchical model. (MBI).
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A hierarchical model for the galaxy distribution

= 0, = intrinsic ellipticity dispersion

= et = galaxy intrinsic ellipticity

= g=shear

= esh = galaxy sheared ellipticity

= PSF = point spread function
= D =model image

= o, = pixel noise
epochs j

D = data: observed image galaxies i
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Our graphical model tells us how to factor the joint likelihood

= Use a probabilistic graphical model to
encode the factorization of the joint
probability distribution of variables in
the model.

@@

epochs j

galaxies i

= We don’t care about esh for cosmology,
so integrate it out.

Pr (g, 00 {PSF};  {on,j, {Dis}})

OC/dngal {eih} [HPI‘ (Dij|PSFj,O'n7j,€§h)]
]

[TPr(etg.o) Pr(g)Pr(aa]

(2

Huge complicated integral to compute for every posterior evaluation.
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Importance Sampling: the pseudo-marginal likelihood

Don’t go back to pixels for every
time we sample a new g or Ce.

For each galaxy, draw image
model parameter samples under a
fixed “interim” prior. This is
embarrassingly parallelizable.

Use reweighted samples to
approximate the integral via

Monte Carlo.

P(X)

How many interim samples are needed?

Interim Interim
rior  Posterior -
Conditiongf=sr==
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Source characterization via probabilistic image modeling

Opt Model

Infer image model parameters via MCMC
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GalSim models inside an MCMC chain — Can it be made fast enough?
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GREATS3 results

= Tested hierarchical approach
using simulations from the third

GRavitational IEnsing Accuracy
Test (GREAT3).

= Hierarchical inference performs
significantly better than
ensemble average maximum
likelihood ellipticity.

Shear residuals

(gsub - gtrue)_+

(gsub - gtrue) x

Hiktaachidbldhifetreitye
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P m+ = +0.03936 +/- 0.00679
0.005 }
0.000 - =
—0.005
—0.010 +
+ s
—0.015 . 1 L " L
—0.06 —0.04 —0.02 0.00 0.02 0.04 0.06
0.015 . . atrue + . i
0.010 | cx = +0.00009 +/- 0.00014 ||
' mx = +0.04391 +/- 0.00538
0.005 |- . , ; - — |
! ; )
0.000 e L .
.
—0.005 | + :
—0.010 |- +
—0.015 : L L L L
—0.06 —0.04 —0.02 0.00 0.02 0.04 0.06
gtrue_x

Input shear

<ML> : 13% shear calibration errors
H.l. : 4% shear calibration errors
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Pr(e'™) is not Gaussian!

Ellipticities from COSMOS

= Would rather not assert a
particular parametric form
for P(e'™).

= Use a “non-parametric”
distribution: a Dirichlet
Process Mixture Model
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Hierarchical inference of intrinsic galaxy properties

Specify a Dirichlet Process (DP) for the distribution
of intrinsic galaxy property hyper-parameters

wn ~N(0,a,), an~G(an|A), G~ DP(A,G))
(87
3 2 r ) ":L 2 3 ) ‘ | | I '
Wn, o o

The DP is a ‘non-parametric’ distribution
with discrete support

The DP distribution allows clustering of data points

(e.g., galaxies) to infer latent structure in the data.

Qp Q1 ..y Qg ~ n—1+A

K
(Z N¢op () + AGo (-))

c=

039,

o ®
%@‘
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Gibbs updates in the Dirichlet Process model

Latent class assignments are updated with different
conditional distributions depending on whether any
other observations are assigned to the current class.

Pr(c, = cilc—n,wn,a, X) =bN_,, . Pr(d,|a,, X), Ve #£n
Pr(c, # ¢Vl # nlc_p, wp, X) = b/@/Pr(dn|a, X) Go(a) da,
The DP mixture parameters are simply updated with

the posterior given all observations currently
associated with the given latent class.

N,

ae, ~ Go (ac,) || Pr(delac,, X))
/=1

Neal (2000)

Highlighted integral is expensive to compute in general.

Pr(ey, # ¢Vl # nlc_p,wp, X) = blﬁ:/ Pr(d,|a, X) Go(a) da

e

/ Pr(d,|o, &) Go(a) da =

Zn al Prmarg (Wnk |a)

N &~ Pr(wnk|lo)

Prmarg(wnk|a) = /dacn GO (Oécn |a)Pr(wnk|acn)

<

N

4
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A simulation study with 100 galaxies validates the DP model

100 galaxies drawn from 1 of 2 Gaussian ellipticity distributions
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Simulation study: We can beat the traditional ‘shape noise’
statistical error bound by inferring latent structure in the data

100 galaxies drawn from 1 of 2 Gaussian ellipticity distributions

3x improvement in cosmic shear precision

Probability Density

005 0O 005
Shear
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GREATS3 results

= Tested hierarchical approach
using simulations from the third
GRavitational IEnsing Accuracy
Test (GREAT3).

= Hierarchical inference performs
significantly better than
ensemble average maximum
likelihood ellipticity.

= The DPMM ellipticity prior
performs better than the single
Gaussian ellipticity prior.

Shear residuals

true) x

o

(gsub -

(gsub - gtrue)_+

Ririchlef Progess Inference

0.015 dp.txt : .
0.010 c+ = -0.00082 +/- 0.00031
’ m+ = +0.00973 +/- 0.01213
0.005 | N +:. ‘:+ :+’ +' . Fr ++
0.000 |- — — =+— _ _Jf::_i‘+ RS J¢‘+“fz+-“ "f ikt _#a}:_' i S
o + 5
—0.005 PP T T AR T, G AT e E
+ + + ¥
—0.010 * + !
_0015 L L I 1 1
—0.06 —0.04 —0.02 0.00 0.02 0.04
0.015 . atrule + . .

0.010 | cx = -0.00004 +/- 0.00025 ||
: - mx = +0.02011 +/- 0.00988
0.005 |- doe et T ¥ P o 1

++ +
0.000 |- — — +_ & ++_+4_* + ﬁ+_t:_“:*‘f?‘o g #' L +_;=~3£1‘F*:*—_L_ Tx.—.;‘_ -
N +"¢‘f‘ +*4* v e +:++¢{*'+o« +‘: +
—0.005 | T+ Sl . e : . +
—0.010 | +
—0.015 " . . L .
—0.06 —0.04 —-0,02 0.00 0.02 0.04

Input-shear

<ML> : 13% shear calibration errors

H.l. : 4% shear calibration errors
DP : 1-2% shear calibration errors
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Multi-variate DP mixture model (in progress):
“standardizable” ellipticities.

= Elliptical galaxies have a narrower intrinsic ellipticity distribution than late-type.
Higher sensitivity to shear!

= Ellipticals/spirals also distinguishable by color and morphology (e.g., Sersic index,
Gini coefficient, asymmetry), potentially providing additional variables with

which to cluster.

= QOther correlations to exploit?

NYSE 2
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Application to the Deep Lens Survey: real galaxies require at
least 2 latent classes (ignoring lensing)

We infer 2 latent classes given only an Preliminary: The marginal posterior distribution of
ellipticity catalog ellipticity variance from the Deep Lens Survey

106

photo-z: [0.65, 0.7]

Counts

- )
10°

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 0.0
Latent class index

-5 -4 -3 -2 -1 0 1 2
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Unlike in the past, we will have many observations of the same sources that
must be combined, while marginalizing distinct systematic errors
— A new processing paradigm
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Space: Hubble ACS Aside: catalog cross-matching between space
S and ground is confused by significant object
blending as seen by LSST

LSST blend fractions estimated from
Subaru & HST overlapping imaging

Assuming PSF=0.7"

0.6
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How do we combine multiple observations of the same galaxy?
Naively we must joint fit all epochs simultaneously

Nepochs

Pr(d,|a,{IL;}) = /dwn Pr(wy,|a) | | Pr(d, ;|wn, IL;)
i=1
Solution: Consider single-epoch samples as draws — —
N . . —Target «++Pro| | 1
from a multi-modal importance sampling ol b e Froposd 1 #2
— Weighted samples (pdf #1)
distribution: — Weighted samples (pd #2)

1 Nepochs ‘
g(wn) = ——— > Pr(wnldn;, 11, Io) \ ﬂ h
Nepochs i—1 o

arXiv:1511.03095
Generalized Multiple Importance Sampling (® Single proposal pf (andard I (5 Two proposal pdfs (MIS),
EIVira, Martino, LuengO, & Buga”O Fig. 1: Approximation of the target pdf, 7(x), by the random measure .
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Generalized multiple importance sampling (MIS) weights

MIS sampling distribution: sample from the conditional posterior for each epoch individually
Nepochs
1 P

g(wn) = —— Z Pr(wp|dp 4, 1L, Io)

Nepochs i—1
MIS weights: Evaluate the ratio of the conditional posterior for each epoch i to that of the
MIS sampling distribution
Pr(d, i|wn, IL;)Pr(w,|a)
> i Pr(dp i wn, 1) Pr(w, | Io)

w; —

‘cross-pollination’ needed:
Evaluate the likelihood of epoch i given model parameter samples |Pr(d -|w(j)H')|
n,1 |%“n 1

from epoch j, for all combinations of 1, j.
A standard scatter / gather operation
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Example: 1 galaxy, 3 epochs - fit the galaxy model parameters

Detector y-axis (arcsec.)

Planter epoch0O
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Each epoch has highly elliptical PSFs (| e| = 0.1) of same size, but
different orientations

The PSF FWHM also matches the galaxy HLR making the single-epoch inferences noticeably different from each other.
There is therefore a large gain of information in combining epochs.

Planter PSF epoch0O Planter PSF epochl Planter PSF epoch2
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2 = < 2 1
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Detector z-axis (arcsec.)
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Interim posterior samples at each stage of the PSF hierarchical
model

1) Fit stars 2) Constrain 3) Fit galaxies & PSFs 4) Calculate MIS
PSF model weights to combine
epochs
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Comparison of single-epoch and combined epochs marginal

posteriors
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Marginalizing PSFs: MIS makes this tractable

= LSST will have ~200 epochs per object per
filter

— We aim to marginalize the PSF [],; in every
epoch
— The marginalization is constrained by:

« Consistency of PSF realizations over the focal
plane for each epoch

« Consistency of the underlying source model
across epochs

= Simplest approach (statistically, not
computationally): Infer galaxy models
given all epoch imaging simultaneously
“Interim” samples are of size: ~10 galaxy

params + 200 * ~4 PSF params = ~1k
parameters!

galaxies n

e

epochs i
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Simulation and analysis pipeline: MIS-enabled

Fit galaxy

Image cutout cutouts

Identify Fit stars to get Constrain PSF Fit galaxy cutouts MIS to combine Source (2) Correlate
sources PSF model epochs Catalog sources

Multi-epoch
imaging

Fit galaxy
Image cutout cutouts

(1) Image modeling in small sky ‘cutouts’

Infer star and galaxy properties
independently for each ‘cutout’
of the sky

Lawrence Livermore National Laboratory N A'% 33

LLNL-PRES-691561 T



Summary

Cosmic shear is systematics limited & signal is dominated by PSF and
astrophysics

— Aprobabilistic approach is warranted to infer a small signal and mitigate biases

= A hierarchical probabilistic model for cosmic shear can trade bias for
variance, but also can increase precision by learning latent structure in the
galaxy distribution.

Probability Density

= Importance sampling methods allow tractable approaches to a probabilistic
forward model of LSST imaging

— With billions of galaxies and hundreds of epochs per galaxy modeling LSST imaging
requires an approach to separating analyses of data subsets, even though statistically <
correlated

likelihood
(and interim posterior)

=  We are able to sample from a probabilistic model with multiple hierarchies to
marginalize both correlated image systematics and astrophysical properties
of galaxies.
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