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I. Identification of shell and stream substructures

in galaxy debris
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Tidal debris morphology: The debris from minor mergers can be broadly
divided into two morphological categories – streams and shells

Figure : Galaxy NGC 5907 (left) and Galaxy NGC 474 (right)

The goal of this collaborative project is to identify and distinguish
different morphologies (i.e., shells and streams)

We hope that this analysis will provide new insights into our
understanding of structure formation
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Stream-like substructures stretch approximately along the progenitor’s
orbit, sometimes wrapping around the host multiple times

Shell-like structures may extend both along and perpendicular to the
path of their disrupted parent, forming an umbrella-shaped
distribution of stars and/or sharp edges in the light distribution

We study the outputs of N-body simulations (across a wide range of
orbital and galactic parameters); Hendel and Johnston (2015)
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We will work with these two simulations

Shells versus Streams

Shells have a sharp edge in surface brightness on one side and a
smooth decay on the other

Streams appear more symmetric around the ‘ridge’
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Shells versus Streams

Shells have a sharp edge in surface brightness on one side and smooth
decay on the other

Streams appear more symmetric around the ‘ridge’

A ridge a local maxima in one direction (like a mode)2 Y.-C. CHEN, C. R. GENOVESE AND L. WASSERMAN

(a) (b)

Fig. 1. Examples for the density ridges.

bandwidth h. The mean ph = E(p̂h) is a smoothed version of the density.
We let R = Ridge(p) denote the ridge of a density p, defined formally in

Section 2.1. We define R̂h ≡ Ridge(p̂n) as the estimated ridge and Rh ≡
Ridge(ph) as the smoothed ridge.

We focus on Rh rather than R for three reasons. First, there is an un-
avoidable bias in estimating R by R̂h. This bias originates intrinsically
from the kernel density estimator (KDE). In contrast, estimating Rh is

unbiased, which allows us to focus on the stochastic variation of R̂h. Sec-
ond, as is shown in Genovese et al. (2014), when a topological assumption
called tameness is assumed [Cohen-Steiner, Edelsbrunner and Harer (2007),
Chazal et al. (2009, 2012)], then Rh and R have the same topology for small
h. In addition, for fixed h, the convergence rate for estimating Rh is fast.

(a) (b)

Fig. 2. Examples of estimated ridges (blue curves).
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Data: 2-D position of particles ({~xi := (xi1, xi2)}ni=1)

Construct kernel density estimator p(~x) to obtain the surface density,
i.e.,

p(~x) =
1

nh2

n∑

i=1

K

(
xi1 − x1

h
,
xi2 − x2

h

)

f1

Y

Z
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Hessian matrix: H(~x) = ∂2

∂x1∂x2
p(~x) at each point ~x

Eigenvector of the smallest eigenvalue of the H(~x): ~v(~x)

The ridge is the set of points ~xr such that

~v(~xr)
>∇p(~xr) = 0 and ~v(~xr)

>H(~xr)~v(~xr) < 0,

local maxima in p along the eigendirection of the smallest eigenvalue

Subspace Constrained Mean Shift [Ozertem, U. & Erdogmus, D. (2011)]2 Y.-C. CHEN, C. R. GENOVESE AND L. WASSERMAN

(a) (b)

Fig. 1. Examples for the density ridges.

bandwidth h. The mean ph = E(p̂h) is a smoothed version of the density.
We let R = Ridge(p) denote the ridge of a density p, defined formally in

Section 2.1. We define R̂h ≡ Ridge(p̂n) as the estimated ridge and Rh ≡
Ridge(ph) as the smoothed ridge.

We focus on Rh rather than R for three reasons. First, there is an un-
avoidable bias in estimating R by R̂h. This bias originates intrinsically
from the kernel density estimator (KDE). In contrast, estimating Rh is

unbiased, which allows us to focus on the stochastic variation of R̂h. Sec-
ond, as is shown in Genovese et al. (2014), when a topological assumption
called tameness is assumed [Cohen-Steiner, Edelsbrunner and Harer (2007),
Chazal et al. (2009, 2012)], then Rh and R have the same topology for small
h. In addition, for fixed h, the convergence rate for estimating Rh is fast.

(a) (b)

Fig. 2. Examples of estimated ridges (blue curves).
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Fix a window perpendicular to the ridge at a point (in the ridge)

Streams are classified by looking for a symmetric peak in the window
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If a peak is not detected, then we try to look for a shell nearby
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Multi-scale idea
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Issues

How to choose the bandwidth (crucial)? Use a multi-scale idea

Peaks are not always well-defined

How to detect the boundary of the shell? Look at the drop in density

How should we choose the width/length of the window?

Dip test (for unimodality) used to choose the length of the window
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II. Contamination Models
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Data: Radial velocity (RV) of stars (n = 1215) from Carina (dSph),
contaminated with Milky Way stars in the field of view.

Question: Find the distribution of RV of stars in Carina — Fs and
the proportion of stars from Carina α

Fb: The distribution of RV of the contaminating stars; known from
the Besancon Milky Way model (Robin et. al, 2003)

Radial Velocity (RV)
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Plot of histogram of Fb (blue) overlaid with the (scaled) KDE of data
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Mixture model with two components

F (x) = αFs(x) + (1− α)Fb(x)

Fb is a known distribution function (DF)

Unknowns: Mixing proportion α ∈ (0, 1) and DF Fs (6= Fb)

Problem: Given a random sample from X1,X2, . . . ,Xn
i.i.d.∼ F (and

Fb), we wish to (nonparametrically) estimate Fs and the parameter α

Applications

In contamination problems — application in astronomy

In multiple testing problems — the p-values are uniformly distributed
on [0,1], under H0, while their distribution associated with H1 is
unknown; see e.g., Efron (2010)
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Identifiability

When α is unknown, the problem is ill-posed

If F = αFs + (1− α)Fb for some Fb (known) and α (unknown), then
the mixture model can be re-written as

F = (α + η)

(
α

α + η
Fs +

η

α + η
Fb

)
+ (1− α− η)Fb,

for 0 ≤ η ≤ 1− α, and the term (αFs + ηFb)/(α + η) can be
thought of as the unknown DF. Thus, if the model holds for α then it
holds for α + η, for every η ≤ 1− α.

Identifiable parameter

We redefine the mixing proportion as

α0 := inf

{
γ ∈ (0, 1] :

F − (1− γ)Fb

γ
is a valid DF

}

Intuitively, this definition makes sure that the “signal” distribution Fs

does not include any contribution from the known “background” Fb

28/32



Estimation of α0 and Fs

Can develop a consistent estimator α̂n of α0

Can construct tuning parameter free nonparametric estimators of Fs

and fs — the density of Fs (under some conditions)

Result

If the model is identifiable, then F̂s,n and f̂s,n are consistent
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Plot of F̂s,n (in dotted red) and Fs (in dashed black) when n = 300
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Lower confidence bound for α0

We can construct a finite sample (honest) lower confidence bound α̂L

with the property

P(α0 ≥ α̂L) ≥ 1 − β, for all n,

for a specified confidence level (1− β), 0 < β < 1

Would allow one to assert, with a specified level of confidence, that
the proportion of “signal” is at least α̂L

α̂L is defined in terms of the (1− β)-quantile of a distribution Hn

Hn is distribution-free, when F is continuous, and can be simulated

Requires no tuning parameters; lower bound holds for all n

30/32



Astronomy application

Data: Radial velocity (RV) of stars (n = 1215) from Carina (dSph),
contaminated with Milky Way stars in the field of view.

Radial Velocity (RV)
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Astronomers usually assume the distribution of the radial velocities
for these dSph galaxies to be Gaussian in nature.

The right panel shows F̂s,n (in dashed red) overlaid with the closest
Gaussian distribution (in blue).

Our estimate α̂n of α0 turns out to be 0.356, while the lower bound
α̂L (at level 0.05) is found to be 0.322.
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Thank You! Questions?
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