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|. Identification of shell and stream substructures

in galaxy debris
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Tidal debris morphology: The debris from minor mergers can be broadly
divided into two morphological categories — streams and shells

Figure : Galaxy NGC 5907 (left) and Galaxy NGC 474 (right)

@ The goal of this collaborative project is to identify and distinguish
different morphologies (i.e., shells and streams)

@ We hope that this analysis will provide new insights into our
understanding of structure formation
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@ Stream-like substructures stretch approximately along the progenitor’s
orbit, sometimes wrapping around the host multiple times

@ Shell-like structures may extend both along and perpendicular to the
path of their disrupted parent, forming an umbrella-shaped
distribution of stars and/or sharp edges in the light distribution

o We study the outputs of N-body simulations (across a wide range of
orbital and galactic parameters); Hendel and Johnston (2015)
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We will work with these two simulations

Simul 1 Simul 2
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Shells versus Streams

@ Shells have a sharp edge in surface brightness on one side and a
smooth decay on the other

@ Streams appear more symmetric around the ‘ridge’
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e Data: 2-D position of particles ({X; := (xi1, xi2)}7_;)
@ Construct kernel density estimator p(X) to obtain the surface density,

ie.,
Xji1 — X1 Xj2 — X2
p(x) = h2 Z ( = )

Simul 1
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at each point X
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e Fix a window perpendicular to the ridge at a point (in the ridge)

@ Streams are classified by looking for a symmetric peak in the window

Alpha= 0.965
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If a peak is not detected, then we try to look for a shell nearby
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Multi-scale idea
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Issues

@ How to choose the bandwidth (crucial)? Use a multi-scale idea

Peaks are not always well-defined

@ How to detect the boundary of the shell? Look at the drop in density

How should we choose the width/length of the window?

Dip test (for unimodality) used to choose the length of the window
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[I. Contamination Models
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e Data: Radial velocity (RV) of stars (n = 1215) from Carina (dSph),
contaminated with Milky Way stars in the field of view.

@ Question: Find the distribution of RV of stars in Carina — F and
the proportion of stars from Carina «

@ Fp: The distribution of RV of the contaminating stars; known from
the Besancon Milky Way model (Robin et. al, 2003)

0.025

0.02

0.015

0.01

0.005

0
-100 0100 200 300
Radial Velocity (RV)

Plot of histogram of Fj (blue) overlaid with the (scaled) KDE of data
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Mixture model with two components

F(x) = aFs(x) + (1 — a)Fp(x)
@ Fp is a known distribution function (DF)

e Unknowns: Mixing proportion v € (0,1) and DF F. (# Fp)
@ Problem: Given a random sample from X3, X, ..., X, M (and
Fb), we wish to (nonparametrically) estimate Fs and the parameter «

Applications

@ In contamination problems — application in astronomy

@ In multiple testing problems — the p-values are uniformly distributed
on [0,1], under Hp, while their distribution associated with Hj is
unknown; see e.g., Efron (2010)
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Identifiability

@ When « is unknown, the problem is ill-posed

o If F=aF;+ (1 — «a)Fp for some Fp, (known) and « (unknown), then
the mixture model can be re-written as

a
F=(ax+n) (a+nF5+aZan)+(lan)Fb,

for 0 <7 <1-— q, and the term (aFs + nFp)/(cc + 1) can be
thought of as the unknown DF. Thus, if the model holds for « then it
holds for a + 7, for every n < 1 — «.

Identifiable parameter

@ We redefine the mixing proportion as

«-\//

F—(1-~)F
ag := inf {’y € (0,1] : F=(=f is a valid DF}

@ Intuitively, this definition makes sure that the “signal” distribution F;
does not include any contribution from the known “background” Fj
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Estimation of ag and Fs

@ Can develop a consistent estimator &, of ag

e Can construct tuning parameter free nonparametric estimators of Fs
and f; — the density of Fs (under some conditions)

o If the model is identifiable, then I:_S,,, and fs’n are consistent

Plot of F;, (in dotted red) and F; (in dashed black) when n = 300
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Lower confidence bound for «y

@ We can construct a finite sample (honest) lower confidence bound &
with the property

Plag > @) >1—p, for all n,

for a specified confidence level (1 —5),0< 8 <1

@ Would allow one to assert, with a specified level of confidence, that
the proportion of “signal” is at least &,

o &y is defined in terms of the (1 — 3)-quantile of a distribution H,
@ H, is distribution-free, when F is continuous, and can be simulated

@ Requires no tuning parameters; lower bound holds for all n
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Astronomy application

e Data: Radial velocity (RV) of stars (n = 1215) from Carina (dSph),
contaminated with Milky Way stars in the field of view.
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@ Astronomers usually assume the distribution of the radial velocities
for these dSph galaxies to be Gaussian in nature.

@ The right panel shows ﬁsm (in dashed red) overlaid with the closest
Gaussian distribution (in blue).

@ Our estimate &, of g turns out to be 0.356, while the lower bound
@y (at level 0.05) is found to be 0.322.
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Thank You! Questions?
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