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Motivation
Time delay estimation problem

Credit: NASA’s Goddard Space Flight Center

The strong gravitational field of a lensing galaxy splits light into two images.

I Light rays take different routes with different lengths.

I Difference between their arrival times → Time delay (∆)

I Time delay is used to infer cosmological parameters including Ho .
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Motivation (cont.)

Modeling time delay → MCMC for multimodality

I Full posterior density function: π(∆,θ | Data) (Tak et al., arXiv).

I Metropolis within Gibbs sampler (Tierney, 1994)

I A multimodal (marginal) posterior of ∆ for Quasar Q0957+561

I Just 8 jumps out of a million iterations!

I Could we improve Metropolis’ ability to jump between modes
without losing its simple-to-implement characteristic?

3 / 13



Idea
There is a RAM on top of the mountain.
How would this RAM move to the top of the other mountain?

Image credit: www.launsteinimagery.com, www.cliparts.com, www.iconfinder.com
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Idea (cont.)
1. Make a down-up movement in density to generate a proposal x ′′.

Image credit: http://www.bestofthetetons.com/, http://blog.showmenaturephotography.com/

2. Accept or reject x ′′ with probability min
{

1, π(x′′)qDU(x (i)|x′′)
π(x (i))qDU(x′′|x (i))

}
.

Note: qDU is a down-up (DU) proposal density.
5 / 13



RAM: Proposal

Two-step procedure
x (i): Current state ↘ x ′: Intermediate proposal ↗ x ′′: Final proposal

1. (Downhill Metropolis) Generate x ′ ∼ q(· | x (i)) ∼ N(x (i), σ2) and

accept x ′ with probability αD
ε (x ′ | x (i)) = min

{
1, π(x (i))+ε

π(x′)+ε

}
.

Repeat this proposal step until one is accepted (forced Metropolis).

2. (Uphill Metropolis) Generate x ′′ ∼ q(· | x ′) and

accept x ′′ with probability αU
ε (x ′′ | x ′) = min

{
1, π(x′′)+ε

π(x′)+ε

}
Repeat this proposal step until one is accepted (forced Metropolis).

Note: ε = 10−308 to prevent a ratio of zeros (0/0).
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RAM: Acceptance/Rejection

Accept x ′′ with a Metropolis-Hastings acceptance probability

αDU(x ′′ | x (i)) = min

{
1,

π(x ′′)qDU(x (i) | x ′′)
π(x (i))qDU(x ′′ | x (i))

}
= min

{
1,

π(x ′′)
∫
q(x | x (i))αD

ε (x | x (i))dx

π(x (i))
∫
q(x | x ′′)αU

ε (x | x ′′)dx

}
.

Is there a way to avoid calculating this intractable ratio?

If we explore an extended space with a correct marginal π(x), then there
can be a way to cancel this intractable ratio (Møller et al., 2006).
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RAM: Auxiliary variable approach

An auxiliary variable z with πC(z | x) well-defined.

I Joint target density: πJ(z , x) = π(x)πC(z | x) = π(x)q(z (i) | x (i))

I Joint proposal density:

qJ(z ′′, x ′′ | z (i), x (i)) = q1(x ′′ | z (i), x (i))q2(z ′′ | x ′′, z (i), x (i))

= qDU(x ′′ | x (i))qD(z ′′ | x ′′)

Note: qD is a forced downhill kernel density.

I Joint acceptance probability:

αJ(z ′′, x ′′ | z (i), x (i)) = min

[
1,

πJ(z ′′, x ′′)qJ(z (i), x (i) | z ′′, x ′′)

πJ(z (i), x (i))qJ(z ′′, x ′′ | z (i), x (i))

]

= min

1,
π(x ′′) min{1, π(x(i))+ε

π(z(i))+ε
}

π(x (i)) min{1, π(x′′)+ε
π(z′′)+ε

}


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RAM: Overall algorithm

↘ x ′ ↗ x ′′ ↘ z ′′

Image credit: http://www.bestofthetetons.com/, http://blog.showmenaturephotography.com/

A RAM is composed of four steps in each iteration.

Steps 1–3: Generating a joint proposal (z ′′, x ′′)

1. (↘) Redraw x ′ ∼ q(· | x (i)) until u1 ∼ Unif(0, 1) < αD
ε (x ′ | x (i))

2. (↗) Redraw x ′′ ∼ q(· | x ′) until u2 ∼ Unif(0, 1) < αU
ε (x ′′ | x ′)

3. (↘) Redraw z ′′ ∼ q(· | x ′′) until u3 ∼ Unif(0, 1) < αD
ε (z ′′ | x ′′)

Step 4: Accept or reject the joint proposal (z ′′, x ′′)

4. Set (z (i+1), x (i+1)) = (z ′′, x ′′) if u4 < αJ(z ′′, x ′′ | z (i), x (i)), where
u4 ∼ Unif(0, 1), and set (z (i+1), x (i+1)) = (z (i), x (i)) otherwise.
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Example: Quasar Q0957+561 (Hainline et al, 2012)

Metropolis within Gibbs sampler for p(∆,β,θ | Data)

I At iteration i ,

Step 1: Sample ∆(i) ∼ p(∆ | θ(i−1),Data)

Step 2: Sample θ(i) ∼ p(θ | ∆(i),Data)

I We use tempered transitions (TT) (Neal, 1996), Metropolis or RAM
to draw ∆ in Step 1.

I We run 10 chains each of length 150,000 with 50,000 burn-in,
spreading 10 initial values of ∆ across its space [−1100, 1100].

I We set an arbitrarily large proposal scale (σ = 400), assuming modal
locations are unknown.

I We consider the CPU time required by each algorithm, running and
thinning longer chains so that each chain has 100,000 samples.
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Example: Quasar Q0957+561 (cont.)

Total # of iterations Avg. CPU time # of jumps
of each chain (seconds) between modes

TT 150,000 3,083 16
Metropolis 1,992,032 3,085 52

RAM 488,267 3,080 120
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Conclusion

Take-home messages

I Easy to implement (Keep it in your MCMC tool box!)

I Always possible to replace Metropolis with RAM for multimodality.

I Our extensive simulation studies will be reported in the final paper
(some of them are on arXiv).

Future directions

I Theoretical convergence rate

I Possibly many (and better) down-up schemes, e.g., anti-Langevin
(Christian P. Robert) or negative temperature (Art B. Owen)

I A global optimizer based on the down-up idea (analog to annealing)
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