#### **Hierarchical Bayesian Modeling**

#### of Exoplanet Compositions



Angie Wolfgang Penn State NSF Postdoctoral Fellow

Eric Ford, Leslie Rogers, SAMSI Bayesian Exoplanet Populations Group, Eric Lopez

### Kepler: An Unexpected Population



### Kepler: An Unexpected Population



So, what does this mean for planet formation?

#### From Detection to Characterization



(But aren't by-eye comparisons enough?)

#### No!!



# Small-Planet Compositions



# **Composition Distribution**

#### Wolfgang & Lopez, 2015



Wanted to understand both:

- compositions of individual super-Earths (fraction of mass in a gaseous envelope: f<sub>env</sub>)
- the distribution of this composition parameter over the Kepler population (μ, σ).

# **Composition Distribution**

#### Wolfgang & Lopez, 2015



Wanted to understand both:

- compositions of individual super-Earths (fraction of mass in a gaseous envelope: f<sub>env</sub>)
- the distribution of this composition parameter over the Kepler population (μ, σ).

### Results



#### First composition distribution:

~ 1% envelope mass fractions are the most likely Width had not been previously characterized

# Mass-Radius Relationship?



#### Kepler gives radius, but need mass to:

- perform dynamical studies
- compare planet surveys
- more directly constrain planet formation theory

# Mass-Radius PDF (probability density function)



#### Kepler gives radius, but need mass to:

- perform dynamical studies
- compare planet surveys
- more directly constrain planet formation theory

$$\frac{M}{M_{\oplus}} = C \Big( \frac{R}{R_{\oplus}} \Big)^{\gamma}$$

$$rac{M}{M_\oplus} \sim \mathrm{Normal}\Big(\mu = C\Big(rac{R}{R_\oplus}\Big)^\gamma, \sigma = \sigma_M\Big)$$

... while accounting for measurement uncertainty

# HBM for Mass-Radius Relation

#### Wolfgang, Rogers, & Ford, 2016



# HBM for Mass-Radius Relation

#### Wolfgang, Rogers, & Ford, 2016



#### Results

deterministic M-R relation:

 ${M\over M_\oplus} = C \Bigl({R\over R_\oplus}\Bigr)^\gamma$ 

#### probabilistic M-R relation:

$$rac{M}{M_\oplus} \sim \mathrm{Normal}\Big(\mu = C\Big(rac{R}{R_\oplus}\Big)^\gamma, \sigma = \sigma_M\Big)$$



There is intrinsic scatter in the current set of R,M measurements.

### Probabilistic M-R Relation:



## Probabilistic M-R Relation:



# Small-Planet Compositions



#### But two methods for mass ...

#### ... with major selection effects in both datasets!!



### But two methods for mass ...

#### ... with major selection effects in both datasets!!



# M-R Relation by Flux

#### Start with two flux-dependent populations



# M-R Relation by Flux

#### Start with two flux-dependent populations



# Summary

Hierarchical modeling is necessary for exoplanet demographics; opportunity for quantitative constraints on planet formation theory.

Much work to be done to **understand biases** in M-R relation and how we can **characterize** its **multi-dimensional nature**.

Hierarchical model comparison is needed to guide physical understanding of the population.