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Supernovae Have Captivated 
Astronomers for Millennia

Notable supernovae include 
SN 1006, 1054, 1181 
1572 (Tycho), 1604 (Kepler),  
1700? (Cas A)


Naked-eye visible


Burbling evidence of a  
changing Universe 



SN 1006 was widely seen

Chinese Star map from 11th century



NASA, ESA, STScI

Modern view  
of SN 1006



Improved detectors brought us 
supernovae in other galaxies  

          20 SNe from   < 1890      : Naked Eye


        750 SNe from 1890-1990  : Plates


     1,000 SNe from 1990-2000  : CCD


     3,700 SNe from 2000-2010  : Cluster Computing


  10,000s SNe from 2010-2020 : Large Cameras


100,000s SNe from 2020-2030 : AI Computing 



What do we learn from 
Supernovae?

Type Ia Supernovae measure distances to points 
in expansion history. -> Dark Energy


Supernovae are a dramatic marker of the end 
point of stars and have substantial influence on 
the next generation of stars.


Supernovae probe extreme physics inaccessible 
on Earth.  gamma-ray bursts, magnetars, pair-
production supernovae, …

A few examples:





Distance will tell
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Composition

Density parameter


Flat Universe, k=0
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How Stuff Evolves
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The Basic Question:

Is a cosmological constant model 
consistent with our observations 

of the Universe?



The Basic Question:

Is w = -1 ?

P = wρ

(paraphrased)



Some Current and Future SN Surveys
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PS1-1000023 SNIa @ z=0.03

Challis et al. (2010), ATel #2448
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Current and Future SN Surveys

SuperNova  
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Dark  
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Latest SNIa Hubble diagram
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= 740 SNe Ia total

http://adsabs.harvard.edu/abs/2014A%26A...568A..22B


Distance will tell
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SNIa+CMB [+BAO] Hints at its Nature
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Equation-of-State Signal

Difference in luminosity distance modulus vs. z
Ω



Current and Future SN Surveys
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DES SN Survey

10 DES fields
Visit once every ~4 days.
2 deep + 8 shallow (30 deg2)

deep: 6600 sec per visit (griz)
shallow: 800 sec per visit (griz)

Fields to overlap with 
existing and near-future deep 
imaging (e.g., CDF-S, SNLS, 
VIDEO) and spectroscopic 
surveys (DEEP2, VIPERS, 
VVDS, WiggleZ, GAMA I/II).

Survey Strategy I: Strategy

- 1650 hexes cover the survey area = a tiling

- 2 tilings/year/bandpass

- 1st year has all filters, later years drop filters 

and increase exposure times

- exposure time in 1st year: 80 seconds

Supernova Fields
                      RA               Dec     

CDF South      52.5              -27.5    deep

Stripe 82         55.0                 0.0    deep

Elias S1              0.5             -43.5    wide

XMM-LSS        34.5               -5.5     wide

SNLS/VIRM     36.75              -4.5     wide

- 5 SN fields

- a SN field visit has

- z: 10 exposures

- i:    6 exposures

- r:    4 exposures

- g:   2 exposures

- 3 deep fields, 2 shallow fields

- deep: 300 sec exposures

- shallow: 100 sec exposures 2

3

good z-band efficiency (~4x higher than 
CFHT/MegaCam) and target high-z SN Ia

good rest-frame g-band light curves of
z~1 SN Ia.

→

Saturday, January 8, 2011



Current and Future SN Surveys
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Future SN Surveys Will 
Cover the High-z Sky

LSST 



Future Wide-Field Surveys Will 
Provide Data for A Wide Variety of 
Supernova Science

SN Ia Cosmology


Homogeneity & Isotropy


SN Ia BAO


Cosmology w/ other SNe


SN over z, Z, environment


Photo-z: SN + Gal 


Pre-SN outbursts


SN rates: type, gal environment, z, SFR


SN progenitors; Galactic SNe and precursors
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(Background is from the

LSST SNeIa Will Measure Cosmology In Many Subsets



SNeIa in LSST have great potential 
to teach us about dark energy

• Measuring distances, H(z), and 
growth of structure, G(z), with a 
percent accuracy for 0.5 < z < 3 

• Multiple probes is the key! 1%

Cosmology with LSST: high precision measurements

By simultaneously measuring 
growth of structure and curvature, 
LSST data will tell us whether the 
recent acceleration is due to dark 
energy or modified gravity.

LSST Science Book, figure 15.3

LSST Science Book, figure 15.2



We will need to classify 
SNe from light curves alone

SN Ia model SN Ibc model

Sako+11



To Maximize SNIa Cosmology 
from Future Surveys We Need:

SN photo-z/photo-typing


SN photo-z + Gal photo-z


SNIa intrinsic color


Host galaxy dust


Simulations & Modeling


SN progenitors & SN explosion

Near-Infrared  
Observations 

Needed!



Challenges in SNIa Cosmology
Calibration - Stubbs & Tonry 2006; Li+14,16


New Cosmology Analysis: Mandel+09,11; Weyant+13; Rubin+15 

Photometric Classification (Kessler+10, Lochner+16) Möller; Vilalta


Host Dust and Intrinsic Properties of SNeIa - Mandel


Environment - Kelly+10; Sullivan+10; Lampeitl+10; Gupta+11;  
  Johansson+13; Childress+13; Rigault+13,15; Kelly+15; Jones+15


Evolution with z (lack of evidence): Howell+07; Bronder+08;  
    Ellis+08; Maeda+10; Blondin+12; Maguire+12


But if there is an environment correlation -> redshift evolution.


Analysis techniques: Ponder, MWV, Zentner 2016, ApJ, in press

BayeSN ABC UNITY
Classification Challenge

machine learning for LSST SN



Rigault et al, 2013 

April 3, 2014 

ADS location 

12 Kara Ponder 



Two Mock SNIa Populations 
with a 0.1 mag difference.

z=1z=0.5



April 3, 2014 Kara Ponder 9 

Kara Ponder

(Ponder, Wood-Vasey, Zentner,  
2016, ApJ, in press)
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