SUPERNOVAE SURVEYS AND STATISTICS

MICHAEL WOOD-VASEY UNIVERSITY OF PITTSBURGH SCMA VI 2016 JUNE 8

Supernovae Have Captivated Astronomers for Millennia

- Notable supernovae include SN 1006, 1054, 1181
 1572 (Tycho), 1604 (Kepler), 1700? (Cas A)
- * Naked-eye visible
- Burbling evidence of a changing Universe

SN 1006 was widely seen

Chinese Star map from 11th century

Modern view of SN 1006

Improved detectors brought us supernovae in other galaxies 20 SNe from < 1890 : Naked Eye * 750 SNe from 1890-1990 : Plates * 1,000 SNe from 1990-2000 : CCD * 3,700 SNe from 2000-2010 : Cluster Computing * 10,000s SNe from 2010-2020 : Large Cameras *

* 100,000s SNe from 2020-2030 : AI Computing

What do we learn from Supernovae? A few examples:

- Type Ia Supernovae measure distances to points in expansion history. -> Dark Energy
- Supernovae are a dramatic marker of the end point of stars and have substantial influence on the next generation of stars.
- Supernovae probe extreme physics inaccessible on Earth. gamma-ray bursts, magnetars, pairproduction supernovae, ...

Expansion History of the Universe

Billions Years from Today

Distance will tell

Luminosity Distance

$$F = \frac{L}{4\pi D_L^2}$$

$$D_L = a(t_0)r(1+z)$$

* Luminosity distance: Luminosity Distance in terms of

$$D_L(z) = \frac{c}{H_0}(1+z) \int_0^z \frac{dz'}{\sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda (1+z')^{3(1+w)}}}$$

(flat, constant w)

How Stuff Evolves

density	W	r	a(t)
matter	0	a^{-3}	$t^{2/3}$
radiation	1/3	a^{-4}	$t^{1/2}$
vacuum	-1	1	e^{Ht}

In a flat Universe (k=0)

The Basic Question:

Is a cosmological constant model consistent with our observations of the Universe?

The Basic Question:

(paraphrased)

$\mathbf{Is} \mathbf{w} = -1?$

 $P = w\rho$

Some Current and Future SN Surveys

Dark Energy Survey

photo: Rich Talcott

+SkyMapper, DES, SDSS-II, KAIT, PTF, ...

Pan-STARRS 1

photo: John Tonry

<image>

PS1-1000023 SNIa @ z=0.03

Challis et al. (2010), ATel #2448

Current and Future SN Surveys

Dark Energy Survey

photo: Rich Talcott

+SkyMapper, DES, SDSS-II, KAIT, PTF, ...

LSST

Pan-STARRS 1

photo: John Tonry

photo: LSST Corporation

Distance will tell

Luminosity Distance

$$F = \frac{L}{4\pi D_L^2}$$

$$D_L = a(t_0)r(1+z)$$

* Luminosity distance: Luminosity Distance in terms of

$$D_L(z) = \frac{c(1+z)}{H_0} \int_0^z \frac{1}{\sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda (1+z')^{3(1+w)}}}$$
(flat, constant w)

SNIa+CMB [+BAO] Hints at its Nature

Equation-of-State Signal

Difference in luminosity distance modulus vs. z Ω

Current and Future SN Surveys

Dark Energy Survey

photo: Rich Talcott

+SkyMapper, DES, SDSS-II, KAIT, PTF, ...

LSST

Pan-STARRS 1

photo: LSST Corporation

photo: John Tonry

DES SN Survey

DARK ENERGY SURVEY

10 DES fields

Visit once every ~4 days. <u>2 deep + 8 shallow</u> (30 deg²) deep: 6600 sec per visit (*griz*) shallow: 800 sec per visit (*griz*)

good z-band efficiency (~4x higher than CFHT/MegaCam) and target high-z SN Ia

→ good rest-frame g-band light curves of z~1 SN la.

Current and Future SN Surveys

Dark Energy Survey

photo: Rich Talcott

+SkyMapper, DES, SDSS-II, KAIT, PTF, ...

Pan-STARRS 1

photo: John Tonry

Future SN Surveys Will Cover the High-z Sky

Future Wide-Field Surveys Will Provide Data for A Wide Variety of Supernova Science

- * SN Ia Cosmology
- * Homogeneity & Isotropy
- * SN la BAO
- * Cosmology w/ other SNe
- * SN over z, Z, environment
- * Photo-z: SN + Gal
- * Pre-SN outbursts
- * SN rates: type, gal environment, z, SFR
- * SN progenitors; Galactic SNe and precursors

LSST SNela Will Measure Cosmology In Many Subsets

(Background is from the

SNela in LSST have great potential to teach us about dark energy

We will need to classify SNe from light curves alone

SN la model

To Maximize SNIa Cosmology from Future Surveys We Need:

- * SN photo-z/photo-typing
- * SN photo-z + Gal photo-z
- * SNIa intrinsic color
- * Host galaxy dust
- Simulations & Modeling

Near-Infrared Observations Needed!

* SN progenitors & SN explosion

Challenges in SNIa Cosmology

- * Calibration Stubbs & Tonry 2006; Li+14,16
- BayeSN ABC UNITY * New Cosmology Analysis: Mandel+09,11; Weyant+13; Rubin+15 Classification Challenge
- Photometric Classification (Kessler+10, Lochner+16) Möller; Vilalta machine learning for LSST SN
- * Host Dust and Intrinsic Properties of SNela Mandel
- * Environment Kelly+10; Sullivan+10; Lampeitl+10; Gupta+11; Johansson+13; Childress+13; Rigault+13,15; Kelly+15; Jones+15
- * Evolution with z (lack of evidence): Howell+07; Bronder+08; Ellis+08; Maeda+10; Blondin+12; Maguire+12
- * But if there is an environment correlation -> redshift evolution.
- * Analysis techniques: Ponder, MWV, Zentner 2016, ApJ, in press

Rigault et al, 2013

Two Mock SNIa Populations with a 0.1 mag difference.

References

- * Betoule et al. 2014, A&A, 568, 22
- * Conley et al. 2011, ApJS, 192, 1
- * Stubbs & Tonry 2006, ApJ, 646, 1436
- * T. S. Li et al. 2014 Proc. SPIE, 9147, 6
- * T. S. Li et al. 2016 AJ, 151, 6, 157
- * Mandel et al. 2009, ApJ, 704, 629
- * Mandel et al. 2011, ApJ, 731, 120
- * Weyant et al. 2013, ApJ, 764, 116
- * Rubin et al. 2015, ApJ, 813, 137
- * Kessler et al. 2010, PASP, 122, 1415
- * Lochner et al. arXiv:1603.00882
- * Kelly et al. 2010, ApJ, 715, 743
- * Sullivan et al. 2010, MNRAS.406..782
- * Lampeitl et al. 2010, ApJ, 722, 566
- * Gupta et al. 2011, ApJ, 741, 127

- * Johansson et al. 2013, MNRAS.435.1680J
- * Childress et al. 2013, ApJ...770..108
- * Rigault et al. 2013 ,A&A...560A..66
- * Rigault et al. 2015, ApJ...802...20
- * Kelly et al. 2015, Sci...347.1459
- * Jones et al. arXiv:150602637
- * Howell et al. 2007, ApJ...667L..37
- * Bronder et al. 2008, A&A...477..717
- * Maeda et al. 2010, Nature, 466, 82
- * Blondin et al. 2012, AJ, 143, 126
- * Maguire et al. 2012, MNRAS, 426, 2359
- * Ellis et al. 2008, ApJ, 674, 51
- * Weyant, Schafer, MWV 2014, ApJ, 784, 105
- * Ponder, MWV, Zentner 2016, ApJ, in press