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Complexity Measures

“Complex” ≈ “many strongly interacting effective degrees of
freedom”
So not: only a few variables; most independent variables; lots
of variables but only a few are relevant
Can we quantify this idea?
If so, what is the number good for?
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I often say that when you can measure what you
are speaking about, and express it in numbers, you
know something about it; but when you cannot
express it in numbers, your knowledge is of a meagre
and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely, in your thoughts,
advanced to the stage of science, whatever the matter
may be. — Thermodynamicist W. Thomson, a.k.a.
Lord Kelvin

but quantifying the wrong things advances a meagre and
unsatisfactory understanding to the stage of pseudoscience,
like IQ testing
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most complexity measures are “conspicuously vacuous”
(Landauer, 1988)

The urge to destroy is also a creative urge.
— Distributed systems theorist M. Bakunin
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Three Kinds of Complexity

1 Description of the system, in the preferred or optimal
model (units: bits)
Wiener, von Neumann, Kolmogorov, Pagels and Lloyd, . . .

2 Learning that model (samples)
Fisher, Neyman, Reichenbach, Vapnik and Chervonenkis,
Valiant, . . .

3 Computational complexity of the model (units: ops)

These are (pretty much) orthogonal
I will focus on description, with an occasional glance at learning
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General references

Badii and Politi (1997)

Feldman and Crutchfield (1998)
Shalizi and Crutchfield (2001, appendices), Shalizi (2006, §8)
(discount appropriately)
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What We Would Like

Low values for easily described determinism

Low values for easily described IID randomness
High values for lots of strong interactions, lots of heterogeneity,
lots of consequential options
Number should have implications about other stuff
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Algorithmic Information Content
Why This Is a Bad Complexity Measure
Kolmogorov Complexity and Learning
Sophistication
Logical Depth

Compression

Ordinary information theory: concise description of random
objects
Can also think about coding and compression of particular
objects, without reference to a generating distribution
Lossless compression: Encoded version is shorter than
original, but can uniquely & exactly recover original
Lossy compression: Can only get something close to original
Stick with lossless compression
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Compression by Programming

Lossless compression needs an effective procedure —
definite steps which a machine could take to recover the
original
Effective procedures = algorithms
Algorithms = recursive functions
Recursive functions = Turing machines
finite automaton with an unlimited external memory

Think about programs written in a universal language (R, Lisp,

Fortran, C, C++, Pascal, Java, Perl, OCaml, Forth, ...)
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x is our object, size |x |

Desired: a program in language L which will output x and then
stop
those programs are descriptions of x
What is the shortest program which will do this?
N.B.: print(x); is the upper bound on the description length
finite # programs shorter than that
so there must be a shortest
Length of this shortest program is KL(x)
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Why the big deal about L being universal?

1 Want to handle as general a situation as possible
2 Emulation: for any other universal language M, can write a

compiler or translator from L to M, so

KM(x) ≤ |CL→M |+ KL(x)

Which universal language doesn’t matter, much; and could use
any other model of computation
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Kolmogorov Complexity

The Kolmogorov complexity of x , relative to L, is

KL(x) = min
p∈D(x)

|p|

where D(x) = all programs in L that output x and then halt
This is the algorithmic information content of x

a.k.a. Kolmogorov-Chaitin complexity,
Kolmogorov-Chaitin-Solomonoff complexity...

1 ≤ KL(x) ≤ |x |+ c

where c is the length of the “print this” stuff
If KL(x) ≈ |x |, then x is incompressible
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Examples

“0”: K ≤ 1 + c

“0” ten thousand times: K ≤ 1 + log2 104 + c = 1 + 4 log2 10 + c
“0” ten billion times: K ≤ 1 + 10 log2 10 + c
“10010010” ten billion times: K ≤ 8 + 10 log2 10 + c
π, first n digits: K ≤ g + log2 n
In fact, any number you care to name contains little algorithmic
information
Why?
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Most Random Sequences are Incompressible

Most objects are not very compressible

Exactly 2n objects of length n bits
At most 2k programs of length k bits
No more than 2k n-bit objects can be compressed to k bits
Proportion is ≤ 2k−n

At most 2−n/2 objects can be compressed in half
Vast majority of sequences from a uniform IID source will be
incompressible
“uniform IID” = “pure noise” for short
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Mean Algorithmic Information and Entropy Rate

For an IID source

lim
n→∞

1
n

E [K (X n
1 )] = H[X1]

For a general stationary source

lim
n→∞

1
n

E [K (X n
1 )] = h1

also (with more conditions) n−1K (X n
1 )→ h1 in probability
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Why You Should Not Use Algorithmic Information As
Your Complexity Measure

1 You can’t figure out what it is
2 Even if you could, it doesn’t do what you want
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Kolmgorov Complexity Is Uncomputable

There is no algorithm to compute KL(x)

Suppose there was such a program, U for universal
Use it to make a new program V which compresses the
incompressible:

1 Sort all sequences by length and then alphabetically
2 For the i th sequence x (i), use U to find KL(x (i))

3 If KL(x (i)) ≤ |V |, keep going
4 Else set z to x (i), return z, and stop

So KL(z) > |V |, but V outputs z and stops: contradiction
Due to Nohre (1994), cited by Rissanen (2003).
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Kolmgorov Complexity Is Uncomputable

There is no algorithm to compute KL(x)
Suppose there was such a program, U for universal
Use it to make a new program V which compresses the
incompressible:

1 Sort all sequences by length and then alphabetically
2 For the i th sequence x (i), use U to find KL(x (i))

3 If KL(x (i)) ≤ |V |, keep going
4 Else set z to x (i), return z, and stop

So KL(z) > |V |, but V outputs z and stops: contradiction
Due to Nohre (1994), cited by Rissanen (2003).

CSSS Quantitative Complexity Measures



Preliminaries
Kolmogorov Complexity
Thermodynamic Depth

Statistical Forecasting Complexity
Zombies

References

Algorithmic Information Content
Why This Is a Bad Complexity Measure
Kolmogorov Complexity and Learning
Sophistication
Logical Depth

There is no algorithm to approximate KL(x)

In particular, gzip does not approximate KL(x)
Can never say: x is incompressible
Can say: haven’t managed to compress x yet
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Incompressible Sequences Look Random

Suppose x is a binary string of length n, with n� 1

If proportion of 1s in x is p, then (EXERCISE)

K (x) ≤ −n(p log2 p + (1− p) log2 1− p) + o(n) = nH(p) + o(n)

Hint: Use Stirling’s formula to count the number of strings

nH(p) < n if p 6= 1
2

Similarly for statistics of pairs, triples, ...
Suggests:

1 Most sequences from non-pure-noise sources will be
compressible

2 Incompressible sequences look like pure noise

ANY SIGNAL DISTINGUISHABLE FROM NOISE IS INSUFFICIENTLY

COMPRESSED
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Incompressible Sequences Look Random (Cont.)

CLAIM 1: Incompressible sequences have all the effectively
testable properties of pure noise

CLAIM 2: Sequences which fail to have the testable properties
of pure noise are compressible
Redundancy |x | − KL(x) is distance from pure noise
If X is pure noise,

Pr (|X | − KL(X ) > c) ≤ 2−c

Power of this test is close to that of any other (computable) test
(Martin-Lof)
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Why the L doesn’t matter

Take your favorite sequence x

In new language L′, the program “!” produces x , any program
not beginning “!” is in L
Makes KL′(x) = 1, but makes descriptions of other strings
longer
But the trick doesn’t keep working
can translate between languages with constant complexity
still true that large incompressible sequences look like pure
noise
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ANY DETERMINISM DISTINGUISHABLE FROM RANDOMNESS IS

INSUFFICIENTLY COMPLEX

Poincaré (2001) said as much 100 years ago, without the math
Excerpt on website

Extends to other, partially-compressible stochastic processes
The maximally-compressed description is incompressible
so other stochastic processes are transformations of noise

CSSS Quantitative Complexity Measures
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Kolmogorov Complexity and Learning

“Occam’s Razor” theorem: If your model can be written as a
short program and it does well on training data, then it will
probably generalize well to new data

This is a total cheat; works because there just aren’t many
short programs; any other sparse set of models will do
say ones whose lengths are exactly kkk

, k prime and < |x |
For much better ideas on Occam’s Razor, see http://www.
andrew.cmu.edu/user/kk3n/ockham/Ockham.html

CSSS Quantitative Complexity Measures
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Sophistication

Gács et al. (2001)

Separate the minimal program into an algorithm and input data
Soph(x) ≡ length of shortest algorithm for which x is a “typical”
output
Tricky definition of “typical”

Not just randomness
Interesting predictive consequences (“algorithmic sufficient
statistics”)
Still completely uncomputable
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Logical Depth

Bennett (1985, 1986, 1990)

Logical depth of x ≈ how long does the shortest program for x
take to run?
If KL(x) is small but many operations are required, deeper than
if KL(x) ≈ |x | but so is the run-time
∴ random strings could be shallower than say π

Still completely uncomputable
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Morals from Kolmogorov Complexity

We don’t just want to measure randomness; we’ve got entropy
for that
A good complexity measure should be low for noise

“To describe coin tosses, toss a coin”

A good complexity measure should be something we can
actually calculate
Best reference on Kolmogorov complexity: Li and Vitányi (1997)
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Thermodynamic Depth

Lloyd and Pagels (1988)

Thermodynamic depth = Shannon entropy of trajectories
leading to the current state
How many bits do we need to describe the particular history
that assembled this state (given that it did end up here)?
Simple states have easily-described histories
Complex states have histories that need lots of information
Alas: depth grows to infinity in a stationary process
See Crutchfield and Shalizi (1999)
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Minimal Sufficient Statistics (encore)

Recall from last time:
A statistic (function of the history) ε is sufficient when
I[X∞t+1; X t

−∞] = I[X∞t+1; ε(X
t
−∞)]

A sufficient statistic is minimal when ε = g(η) for any other
sufficient η, thus I[X t

−∞; ε(X t
−∞)] ≤ I[X t

−∞; η(X t
−∞)]

Minimal sufficient statistics are unique (up to re-labeling of
values)
We can construct them and (sometimes) estimate them
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Statistical Complexity

Definition

CGCY ≡ I[ε(X t
−∞); X t

−∞] is the statistical forecasting
complexity of the process

= amount of information about the past needed for optimal
prediction
Verbal formulation from Grassberger (1986)
Crutchfield and Young (1989) made “state” and “optimal
prediction” precise
Split the difference and call it GCY complexity

CSSS Quantitative Complexity Measures



Preliminaries
Kolmogorov Complexity
Thermodynamic Depth

Statistical Forecasting Complexity
Zombies

References

Causal States and Their Complexity
Spatio-Temporal Prediction
Self-Organization and Emergence
Cyclic Cellular Automata, for Example

Statistical Complexity

Definition

CGCY ≡ I[ε(X t
−∞); X t

−∞] is the statistical forecasting
complexity of the process

= amount of information about the past needed for optimal
prediction

Verbal formulation from Grassberger (1986)
Crutchfield and Young (1989) made “state” and “optimal
prediction” precise
Split the difference and call it GCY complexity

CSSS Quantitative Complexity Measures



Preliminaries
Kolmogorov Complexity
Thermodynamic Depth

Statistical Forecasting Complexity
Zombies

References

Causal States and Their Complexity
Spatio-Temporal Prediction
Self-Organization and Emergence
Cyclic Cellular Automata, for Example

Statistical Complexity

Definition

CGCY ≡ I[ε(X t
−∞); X t

−∞] is the statistical forecasting
complexity of the process

= amount of information about the past needed for optimal
prediction
Verbal formulation from Grassberger (1986)

Crutchfield and Young (1989) made “state” and “optimal
prediction” precise
Split the difference and call it GCY complexity

CSSS Quantitative Complexity Measures



Preliminaries
Kolmogorov Complexity
Thermodynamic Depth

Statistical Forecasting Complexity
Zombies

References

Causal States and Their Complexity
Spatio-Temporal Prediction
Self-Organization and Emergence
Cyclic Cellular Automata, for Example

Statistical Complexity

Definition

CGCY ≡ I[ε(X t
−∞); X t

−∞] is the statistical forecasting
complexity of the process

= amount of information about the past needed for optimal
prediction
Verbal formulation from Grassberger (1986)
Crutchfield and Young (1989) made “state” and “optimal
prediction” precise
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Some Properties of GCY Complexity

Grows with the diversity of statistically distinct patterns of
behavior
= H[ε(X t

−∞)] for discrete causal states

= average-case sophistication
= log(period) for period processes
= log(geometric mean(recurrence time)) for stationary
processes
= information about microstate in macroscopic observations
(sometimes)
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Predictive Information

Ipred ≡ I[X∞t+1; X t
−∞]

a.k.a. effective measure complexity, excess entropy, . . .
Easily shown that

I[X∞t+1; X t
−∞] = I[X∞t+1; ε(X

t
−∞)] ≤ I[ε(X t

−∞); X t
−∞]

You need at least m bits of state to get m bits of prediction
Efficiency of prediction = Imathrmpred/CGCY ≤ 1
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Spatio-Temporal Prediction

Dynamic random field: X (~r , t)
Assume a finite “speed of light”
Past light cone of (~r , t): all points at earlier times from which a
signal could have come
Future light cone: all points at later times to which a signal
could go
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past

future
Light cones in 1 + 1D
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Local Causal States

Go through equivalence classing again, only now for predicting
the configuration in the future cone from that in the past cone
Still minimal sufficient statistics, recursive updating (on new
information), local states form a Markov random field
(Shalizi, 2003; Shalizi et al., 2004, 2006)
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Self-Organization

The system self-organizes between time t1 and t2 iff (1)
C(t2) > C(t1), and (2) this increase is not all externally caused.

(2) is the problem of exorcising demons.
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Emergence

Start with a process (Xt) at one level of description, get C(X ),
Ipred(X )

Coarse-grain it to get a higher level (more abstract, less
refined) description, with induced process (Yt), with its own
C(Y ), Ipred(Y )
Higher level emerges iff

Ipred(Y )

C(Y )
>

Ipred(X )

C(X )

Can e.g. show that thermodynamic descriptions emerge from
statistical-mechanical ones (Shalizi and Moore, 2003)
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Local Statistical Complexity

Shalizi et al. (2006)

C(~r , t) ≡ − log Pr
(
S = s(~r , t)

)

Gives the local density of the information needed for prediction
Can change over space and time
Use to automatically filter for the interesting bits
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Cyclic Cellular Automata, as an Example

Quantitative model of excitable media
κ colors; a cell of color k switches to k + 1 mod κ if at least T
neighbors are already of that color
Analytical theory for structures formed (Fisch et al., 1991a,b)
Generic behaviors: spirals, “turbulence”, local oscillations,
fixation
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Initial configuration, T = 1

CSSS Quantitative Complexity Measures



Preliminaries
Kolmogorov Complexity
Thermodynamic Depth

Statistical Forecasting Complexity
Zombies

References

Causal States and Their Complexity
Spatio-Temporal Prediction
Self-Organization and Emergence
Cyclic Cellular Automata, for Example

Final configuration, T = 1 (oscillates forever)
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Initial configuration, T = 4
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Final configuration, T = 4 (static blocks)
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Initial configuration, T = 2
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Intermediate time configuration, T = 2
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Asymptotic configuration, T = 2, rotating spirals
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Initial configuration, T = 3
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Intermediate time configuration, T = 3
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Asymptotic configuration, T = 3, turbulent seething gurp
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CGCY vs. time and threshold, 300× 300 lattice, 30 replicas
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Typical long-time configuration
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Hand-crafted order parameter field
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Local complexity field
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Order parameter (broken symmetry, physical insight, tradition, trial and error,

current configuration) vs. local statistical complexity (prediction, automatic,

time evolution)
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Table 1: Timings for Isotropic Diffusion (Diffusion), Swirling Flow (Swirl), and Flow Around a Cylinder (Cylinder). The following abbreviations
are used: the different Fields used for the analysis are vector (v) or scalar (s) valued; the different Implementations used are simple (none of the
efficient implementation strategies is used), or efficient (all strategies are used); Past and Future Depth denote the depth of the past and future
light-cones respectively; # Representatives is the number of representative used in the classification process; Size of List gives the number of
candidates in the classification; # Omitted denotes the number of time steps being omitted, when classifying the representatives.

Dataset Fields Implementation Past Depth Future Depth # Representatives Size of List # Time Steps # Omitted Time

Cylinder 2s, 1v simple 3 3 200 - 5 0 1 h 20 min
Cylinder 2s, 1v efficient 3 3 200 700 5 0 14 min
Cylinder 2s, 1v efficient 2 2 5000 1 1 0 58 min
Cylinder 2s, 1v efficient 2 2 5000 700 1 0 12 min
Cylinder 2s, 1v efficient 2 2 9000 700 300 20 4h 5min

Swirl 1s, 1v efficient 2 2 5000 600 1 0 6 min
Diffusion 1s efficient 2 2 5000 600 1 0 4 min

0.2
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Figure 7: Illustrations of the swirling flow: (top) (left) LIC of the ve-
locity of the swirling flow. The conical shear region is outlined in
blue. Several ringlike vortex structures can be observed, one being
marked by red points. (right) The LIC is overlayed by a transparent
mask, hiding regions of small velocity. Thus, the structure of the flow
is clarified. (middle) (left) Colormap of the norm of the velocity. (right)
The norm of the velocity mapped on the LIC. (bottom) (left) Colormap
of the vorticity. (right) Vorticity mapped on the LIC.
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Figure 8: Local statistical complexity fields of the swirling flow from
top to bottom: velocity and vorticity, velocity, and vorticity. The im-
portant structure, i.e., the conical shear region and the ringlike vortex
structures, are clearly highlighted in the right images, showing a LIC
of the flow overlayed with the local statistical complexity field.

Streamlines from computational fluid dynamics; color indicates
local complexity of velocity field (Jänicke et al., 2007)
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Zombie Complexities

Ideas which should be dead, but continue to eat brains

Prigogine’s ideas on dissipative structures
Haken’s synergetics
Wolfram’s 4 classes of CA
The edge of chaos — see Mitchell et al. (1993)
(disorder)× (1− disorder) — see Binder and Perry
(2000); Crutchfield et al. (2000)
Self-organized criticality (as a ruling idea)
Power-laws, therefore complex
Tsallis statistics
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Why Physicists Think Power Laws Are Cool

Go back to fundamental statistical mechanics
Macroscopic variable M = coarse-graining of microscpic state
W (m) = volume of microstates x such that M(x) = m
Boltzmann entropy SB(m) = log W (m)
Equilibrium = state m∗ maximizing SB
Einstein formula for fluctuations around equilibrium:

Pr (M = m) ∝ eSB(m)
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Expand around m∗, so ∂SB/∂m = 0 at m∗

Pr (M = m) ∝ eS(m∗)+ 1
2

∂2S(m∗)
∂m2 (m−m∗)2+h.o.t.

∝ e
1
2

∂2S(m∗)
∂m2 (m−m∗)2+h.o.t.

drop the h.o.t.

M ∼ N (m∗,−∂
2S(m∗)
∂m2 )
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What’s Really Going On

correlations are short range
⇒ rapid approach to independence, exponential mixing
⇒ central limit theorem for averages over space (and time)
⇒ Gaussians for macroscopic variables (which are averages)
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Phase Transitions

See Yeomans (1992) for nice introduction
Basically, bifurcations: behavior changes suddenly as
temperature (or pressure or other control variable) crosses
some threshold
First order: entropy is discontinuous at critical point
Examples: ice/water at 273K (and standard pressure); water/steam at 373K
order parameter is discontinuous
Second order: derivative of entropy is discontinuous
Example: “Curie point”, permanent magnetization/not in iron 1043K
order parameter continuous but with sharp kink
like amplitude of limit cycle in period-doubling
Focus on continuous (second-order) case
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Critical fluctuations

Entropy story breaks down because derivatives→ ±∞
Competition between two phases, no preference, one can pop
up in the middle of the other
Fluctuations get arbitrarily large⇒ long-range correlations⇒
slow mixing (if any)
Assemblage becomes self-similar: magnify a small part and it
looks just like the whole thing (“renormalization”)
only strictly true for infinitely big assemblages
averaging must lead to a self-similar distribution
Power laws are self-similar (scale-free)
Conclusion: at critical point, expect to see power law
distributions
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Theory of phase transitions / critical phenomena / order
parameters / renormalization one of the key developments in
physics over the last half century (Yeomans, 1992; Domb,
1996)

⇒ physicists think criticality is Very Cool
Criticality⇒ power law distributions
so physicists tend to think:

(i) ¬ power laws⇒ ¬ critical⇒ Bored Now
(ii) power laws⇒ critical→ Very Cool

(ii) is called “the fallacy of affirming the consequent”
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so physicists tend to think:

(i) ¬ power laws⇒ ¬ critical⇒ Bored Now
(ii) power laws⇒ critical→ Very Cool

(ii) is called “the fallacy of affirming the consequent”
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Many ways to get power laws or other heavy-tailed distributions

e.g., exponential growth for a random time (Reed and Hughes,
2002)
or multiplicative fluctuations (Simon, 1955)
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Tsallis Statistics

Take the MaxEnt procedure, but instead maximize

Hq[X ] ≡ 1
q − 1

(
1−

∑
x

(Pr (X = x))q

)

(similar form for continuous case)
Reverts to Shannon entropy as q → 1
leads to “q-exponential” CDF

Pq,κ(X ≥ x) =

(
1− (1− q)x

κ

)1/(1−q)
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q-Exponentials

(Shalizi, 2007) Set

q = 1 +
1
θ
, κ =

σ

θ

Observe
Pθ,σ(X ≥ x) = (1 + x/σ)−θ

vs. “type II generalized Pareto distribution” (Arnold, 1983)

P(X ≥ x) = [1 + (x − µ)/σ]−α

set µ = 0 and α = θ
Comes from a mixture of exponentials (Maguire et al., 1952)
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Tsallis statistics supposedly good for long-range interactions

but the MaxTsallisEnt principle doesn’t even agree with large
deviations theory (La Cour and Schieve, 2000)
and large deviations does agree with the actual behavior of
long-range interacting assemblages (Barré et al., 2005)
but Tsallis gives us power laws, so Physica A will love it forever
and ever
If you want more:
http://bactra.org/notebooks/tsallis.html
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