
Partitioning Data into Clusters

Finding Categories in Data

36-350: Data Mining

20 September 2006

Reading: Textbook, sections 9.3–9.5.

Why Cluster?

So far, in our discussion of categorization, we have been assuming that we have
some initial examples which are divided into sensible classes. That is, on our
training data, we not only know what the classes are (automobile/motorcycle,
flower/tiger/ocean, etc.), but we know which example is in which class, because
the examples have been labeled by someone who knew what they were doing.
The point of classification methods, like the nearest-neighbor method or the
prototype method, is to accurate assign new, unlabeled examples (from test
data) to these known classes. This involves guessing and extrapolation, but we
at least have the labeled training data to start from. (This use of the training
labels is why the subject is called supervised learning.) The point of calculating
information was to select features which made classification easier.

All of this depends on having both known categories and labeled examples
of the categories. If there are known categories but no labeled examples, we
may be able to do some kind of query, feedback, reinforcement or semi-
supervised learning, if we can check guesses about category membership —
Rocchio’s algorithm, from lecture 2, takes feedback from a user and learns to
classify search results as “relevant” or “not relevant”. But we might not have
known classes to start with. In these unsupervised situation, one thing we can
try to do is to discover categories which are in implicit in the data themselves.
These categories are called clusters, rather than “classes”, and finding them is
the subject of clustering or cluster analysis. (See Table 1.)

(Even if our data comes to us with class labels attached, it’s often wise to
be skeptical of their use. Official classification schemes are often the end result
of a mix of practical experience; intuition; theory; prejudice; ideas copied from
somewhere else; compromises among groups which differ in interests, ideas and
clout; and people making stuff up because they need something by deadline.
Moreover, once a scheme gets established, organizational inertia can keep it in
place long after whatever relevance it once had has eroded away. The Census

1



Known classes? Class labels Type of learning problem
Yes Given for training data Classification; supervised learning
Yes Hints/feedback Semi-supervised learning
No None Clustering; unsupervised learning

Table 1: Kinds of learning problems

Bureau set up a classification scheme for different jobs and industries in the
1930s, so that for several decades there was one class of jobs in “electronics”,
including all of the computer industry. The point being, even when you have
what you are told is a supervised learning problem with labeled data, it can
be worth treating it as unsupervised learning problem. If the clusters you find
match the official classes, that’s a sign that the official scheme is actually rea-
sonable and relevant; if they disagree, you have to decide whether to trust the
official story or your cluster-finding method.)

Good clusters

A good way to start thinking about how to cluster our data is to ask ourselves
what properties we want in clusters. First of all, clusters, like classes, should
partition the data: every possible object should belong to one, and only one,
cluster. Beyond that, it would be good if knowing which cluster an object
belonged to told us, by itself, a lot about that object’s properties. In other
words, we would like the expected information in the cluster about the features
to be large. If the features are X1, X2, . . . Xn, and the cluster is C, we would
ideally maximize

I[X1, X2, . . . Xn;C]

Actually doing this maximization turns out to be very hard. However, we can
say some things about what the maximally-informative clusters would look like,
and use these properties to guide our search.

A high information value for the clusters means that knowing the cluster
reduces our uncertainty about the features. All else being equal, this means that
the objects in a cluster should be similar to each other, or form a compact set
of points in feature-vector space. Again, all else being equal, different clusters
should have different distributions of features, so clusters should be separated.
If one of the clusters is much more probable than the others, learning which
cluster an object belongs to doesn’t reduce uncertainty about its features much,
so ideally the clusters should be equally probable, or balanced. Finally, we
could get a partition which was compact, separated and balanced by saying
each object was a cluster of one, but that would be silly, because we want the
partition to be parsimonious, with many fewer clusters than objects.

There are many algorithms which try to find clusters which are compact,
separated, balanced and parsimonious. Parsimony and balance are pretty easy
to quantify; measuring compactness and separation depends on having a good

2



measure of distance for our data to start with. (Fortunately, similarity search
has taught us a lot about distance!) We’ll look first at one of the classical
clustering algorithms, and try to see how it achieves all these goals.

The k-means algorithm

Recall that in the prototype method, we took the prototype for each class to be
its average or mean, and assigned new points to the class with the closest pro-
totype. The k-means algorithm is an unsupervised relative of the prototype
method for clustering, rather than classification.

1. Guess the number of clusters, k

2. Guess the location of cluster means

3. Assign each point to the nearest mean

4. Re-compute the mean for each cluster

5. If the means are unchanged, exit; otherwise go back to (3)

The objective function for k-means, what it “wants” to minimize, is the
sum-of-squares for the clusters:

SS ≡
∑
C

∑
i∈C

‖xi −mC‖2

mC ≡ 1
nC

∑
i∈C

xi

mC is the mean for cluster C, and nC is the number of points in that cluster.
The within-cluster variance for cluster C is

VC ≡ 1
nC

∑
i∈C

‖xi −mC‖2

so
SS =

∑
C

nCVc

In words, the sum of squares is the within-cluster variance times the cluster size,
summed over clusters. If each cluster is compact, they will have a small within-
cluster variance, so VC and SS will be small, so this objective function favors
compactness. It also favors balance, because big clusters are more “costly” than
small ones of equal variance.

Each step of k-means reduces the sum-of-squares. The sum-of-squares is
always positive. Therefore k-means must eventually stop, no matter where it
was started. However, it may not stop at the best solution.

K-means is a local search algorithm: it makes small changes to the solution
that improve the objective. This sort of search strategy can get stuck in local

3



minima, where the no improvement is possible by making small changes, but
the objective function is still not optimized.

It’s often helpful to think of this in terms of a search landscape, where
the height of the landscape corresponds to how good a solution the algorithm
has found. (So minimizing the objective function is the same as maximizing the
height on the landscape.) Local search is also called hill climbing, because it’s
like a short-sighted climber who tries to get to the top by always going uphill. If
the landscape rises smoothly to a central peak, this will get to that peak. But if
there are local peaks, it can get stuck at one, and which one it reaches depends
on where the climb starts.

For k-means, the different starting positions correspond to different initial
guesses about the cluster centers. Changing those initial guesses will change the
output of the algorithm. These are typically randomized, either as k random
data points, or by randomly assigning points to clusters and then computing
the means. Different runs of k-means will thus generally give different clusters,
but you can actually make use of this: if some points end up clustered together
in many different runs, that’s a good sign that they really do belong together.

Hierarchical clustering

k means is what’s sometimes called a simple or flat partitioning algorithm,
because it just gives us a single set of clusters, with no particular organization or
structure within them. But it could easily be the case that some clusters could,
themselves, be closely related to other clusters, and more distantly related to
others. (If we are clustering images, we might want not just to have a cluster
of flowers, but roses and marigolds within that. Or, if we’re clustering patient
medical records, we might want “respiratory complaints” as a super-cluster
of “pneumonia”, “influenza”, “SARS”, “sniffles”.) So sometimes we want a
hierarchical clustering, which is depicted by a tree or dendrogram.

War’ds method

Ward’s method is another algorithm for finding a partition with small sum
of squares. Instead of starting with a large sum of squares and reducing it, you
start with a small sum of squares (by using lots of clusters) and then increasing
it.

1. Start with each point in a cluster by itself (sum of squares = 0).

2. Merge two clusters, in order to produce the smallest increase in the sum
of squares (the smallest merging cost).

3. Keep merging until you’ve reached k clusters.

4



The merging cost is the increase in sum of squares when you merge two clusters
(A and B, say), and has a simple formula:

∆(A,B) =
∑

i∈A∪B

‖xi −mA∪B‖2 −
∑
i∈A

‖xi −mA‖2 −
∑
i∈C

‖xi −mB‖2

=
nAnB

nA + nB
‖mA −mB‖2

(You may recall having seen a similar formula for t-tests of the difference in
means.) Note that Ward’s method does not rely on a random starting guess, so
its answer is unique.

The ∆ formula tells us that there is a trade-off between separation and
balance. If clusters are equally far apart (separated), it’s better to merge the
smaller ones. This means that Ward’s algorithm will sometimes merge clusters
which are further apart but smaller.

The k-means algorithm gives no guidance about what k should be. Ward’s
algorithm, on the other hand, can give us a hint through the merging cost. If
the cost of merging increases a lot, it’s probably going too far, so a reasonable
rule of thumb is to keep reducing k until the cost jumps, and then use the k
right before the jump.

The partitions produced by Ward’s method are nested: the partition of size
k is contained within the partition of size k + 1. Ward’s method also does not
do local search. These two properties mean that Ward’s method generally does
not produce a sum-of-squares as small as k-means. However, we can run the
k-means search starting from the Ward’s method solution, to get a competitive
sum-of-squares.

5



Here’s what Ward’s method does with the flower/tiger/ocean images (rep-
resented, as usual, by bags of colors):

 

 gray32

 orchid3

 darkmagenta
 flower2

 flower3

 orchid3
 flower6

 orchid3
 flower7

 flower8

 gray59.2
 flower9

 plum4
 flower1

 flower4

 midnightblue

 gray10

 gray36
 tiger7

 burlywood2
 tiger3

 tiger5

 darkseagreen4
 flower5

 antiquewhite2
 tiger6

 darkseagreen4

 darkseagreen4
 tiger8

 tiger9

 lightgoldenrod3
 tiger4

 gray10
 tiger1

 tiger2

 darkslategray.2

 darkslategray.2
 ocean3

 ocean7

 lightskyblue3

 azure3
 ocean2

 ocean4

 royalblue
 ocean5

 royalblue
 ocean1

 ocean6

Only one mistake is made (flower5). The clustering was computed using
all colors, but to enhance interpretation, each cluster has been labeled with a
“joining” color (one which both subgroups have in common but is rare in the
rest of the data). This is similar to finding colors with high information content.

The merging cost suggests that there are 3 clusters (also 6 or 8):

6



2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

clusters

m
er

gi
ng

 c
os

t

The sum of squares measures distance equally in all directions, so it wants
the clusters to be round. This is not always very sensible (see Figure 1).

Single-link algorithm

Single-link clustering can handle any cluster shape:

1. Start with each point in a cluster by itself (sum of squares = 0).

2. Merge the two clusters with smallest gap (distance between the two closest
points)

3. Keep merging until you’ve reached k clusters.

It’s called “single link” because it will merge clusters so long as any two points
in them are close (i.e., there is one link).

This algorithm only wants separation, and doesn’t care about compactness
or balance. This can lead to new problems, as shown in Figure 2.

7



k-means Ward Single-link

Figure 1: Some clustering problems where the single-link method does better
than k-means or Ward’s method. (In the k-means plots, the cluster means are
marked ×.)

k-means Ward Single-link

Figure 2: Some cases where k-means or Ward’s algorithm does better than the
single-link method.

8


