
Lecture 10: Regression Trees

36-350: Data Mining

October 11, 2006

Reading: Textbook, sections 5.2 and 10.5.

The next three lectures are going to be about a particular kind of nonlinear
predictive model, namely prediction trees. These have two varieties, regres-
sion trees, which we’ll start with today, and classification trees, the subject
of the next lecture. The third lecture of this sequence will introduce ways of
combining multiple trees.

You’re all familiar with the idea of linear regression as a way of making
quantitative predictions. In simple linear regression, a real-valued dependent
variable Y is modeled as a linear function of a real-valued independent variable
X plus noise:

Y = β0 + β1X + ε

In multiple regression, we let there be multiple independent variables X1, X2, . . . Xp ≡
X,

Y = β0 + βT X + ε

This is all very well so long as the independent variables each has a separate,
strictly additive effect on Y , regardless of what the other variables are doing.
It’s possible to incorporate some kinds of interaction,

Y = β0 + βT X + γXXT + ε

but the number of parameters is clearly getting very large very fast with even
two-way interactions among the independent variables, and stronger nonlinear-
ities are going to be trouble...

Linear regression is a global model, where there is a single predictive for-
mula holding over the entire data-space. When the data has lots of features
which interact in complicated, nonlinear ways, assembling a single global model
can be very difficult, and hopelessly confusing when you do succeed. An al-
ternative approach to nonlinear regression is to sub-divide, or partition, the
space into smaller regions, where the interactions are more manageable. We
then partition the sub-divisions again — this is called recursive partitioning
— until finally we get to chunks of the space which are so tame that we can fit
simple models to them. The global model thus has two parts: one is just the
recursive partition, the other is a simple model for each cell of the partition.

1

Prediction trees use the tree to represent the recursive partition. Each of the
terminal nodes, or leaves, of the tree represents a cell of the partition, and has
attached to it a simple model which applies in that cell only. A point x belongs
to a leaf if x falls in the corresponding cell of the partition. To figure out which
cell we are in, we start at the root node of the tree, and ask a sequence of
questions about the features. The interior nodes are labeled with questions, and
the edges or branches between them labeled by the answers. Which question we
ask next depends on the answers to previous questions. In the classic version,
each question refers to only a single attribute, and has a yes or no answer, e.g.,
“Is Horsepower > 50?” or “Is GraduateStudent == FALSE?” Notice that
the variables do not all have to be of the same type; some can be continuous,
some can be discrete but ordered, some can be categorical, etc. You could do
more-than-binary questions, but that can always be accommodated as a larger
binary tree. Somewhat more useful would be questions which involve two or
more variables, but we’ll see a way to fake that in the lecture on multiple trees.

That’s the recursive partition part; what about the simple local models?
For classic regression trees, the model in each cell is just a constant estimate of
Y . That is, suppose the points (xi, yi), (x2, y2), . . . (xc, yc) are all the samples
belonging to the leaf-node l. Then our model for l is just ŷ = 1

c

∑c
i=1 yi, the

sample mean of the dependent variable in that cell. This is a piecewise-constant
model.1 There are several advantages to this:

• Making predictions is fast (no complicated calculations, just looking up
constants in the tree)

• It’s easy to understand what variables are important in making the pre-
diction (look at the tree)

• If some data is missing, we might not be able to go all the way down the
tree to a leaf, but we can still make a prediction by averaging all the leaves
in the sub-tree we do reach

• The model gives a jagged response, so it can work when the true regression
surface is not smooth. If it is smooth, though, the piecewise-constant
surface can approximate it arbitrarily closely (with enough leaves)

• There are fast, reliable algorithms to learn these trees

Figure 1 shows an example of a regression tree, which predicts the price of
cars. (All the variables have been standardized to have mean 0 and standard
deviation 1.) The R2 of the tree is 0.85, which is significantly higher than that
of a multiple linear regression fit to the same data (R2 = 0.8, including an
interaction between Wheelbase and Horsepower < 0.)

1If all the variables are quantitative, then instead of taking the average of the dependent
variable, we could, say, fit a linear regression to all the points in the leaf. This would give
a piecewise-linear model, rather than a piecewise-constant one. If we’ve built the tree well,
however, there are only a few, closely-spaced points in each leaf, so the regression surface
would be nearly constant anyway.

2

 Horsepower

<−0.2
 Wheelbase

<−0.07 Horsepower

<−1.3 (9) Price = −1.6

>−1.3 (21) Price = −0.89

>−0.07 (8) Price = −0.15

>−0.2
 Horsepower

<0.6 Wheelbase

<0.08 (14) Price = 0.055

>0.08 (21) Price = 0.42

>0.6 (19) Price = 1.2

Figure 1: Regression tree for predicting price of 1993-model cars. All features
have been standardized to have zero mean and unit variance. Note that the order
in which variables are examined depends on the answers to previous questions.
The numbers in parentheses at the leaves indicate how many cases (data points)
belong to each leaf.

3

−2 −1 0 1 2

−2
−1

0
1

2

Horsepower

W
he

el
ba

se

 −2 3−0.7 0.1 0.8
Price

−1.600 −0.890

−0.150

 0.055

 0.420

 1.200

Figure 2: The partition of the data implied by the regression tree from Figure 1.
Notice that all the dividing lines are parallel to the axes, because each internal
node checks whether a single variable is above or below a given value.

The tree correctly represents the interaction between Horsepower and Wheelbase.
When Horsepower > 0.6, Wheelbase no longer matters. When both are equally
important, the tree switches between them. (See Figure 2.)

Once we fix the tree, the local models are completely determined, and easy
to find (we just average), so all the effort should go into finding a good tree,
which is to say into finding a good partitioning of the data. We’ve already seen,
in clustering, some ways of doing this, and we’re going to apply the same ideas
here.

In clustering, remember, what we would ideally do was maximizing I[C;X],
the information the cluster gave us about the features X. With regression trees,
what we want to do is maximize I[C;Y], where Y is now the dependent variable,
and C are now is the variable saying which leaf of the tree we end up at. Once
again, we can’t do a direct maximization, so we again do a greedy search. We
start by finding the one binary question which maximizes the information we
get about Y ; this gives us our root node and two daughter nodes. At each
daughter node, we repeat our initial procedure, asking which question would
give us the maximum information about Y , given where we already are in the

4

tree. We repeat this recursively.
One of the problems with clustering was that we needed to balance the

informativeness of the clusters with parsimony, so as to not just put every point
in its own cluster. Similarly, we could just end up putting every point in its own
leaf-node, which would not be very useful. A typical stopping criterion is to
stop growing the tree when further splits gives less than some minimal amount
of extra information, or when they would result in nodes containing less than,
say, five percent of the total data. (We will come back to this in a little bit.)

We have only seen entropy and information defined for discrete variables.
You can define them for continuous variables, and sometimes the continuous
information is used for building regression trees, but it’s more common to do the
same thing that we did with clustering, and look not at the mutual information
but at the sum of squares. The sum of squared errors for a tree T is

S =
∑

c∈leaves(T)

∑
i∈C

(yi −mc)
2

where mc = 1
nc

∑
i∈C yi, the prediction for leaf c. Just as with clustering, we

can re-write this as
S =

∑
c∈leaves(T)

ncVc

where Vc is the within-leave variance of leaf c. So we will make our splits so as
to minimize S.

The basic regression-tree-growing algorithm then is as follows:

1. Start with a single node containing all points. Calculate mc and S.

2. If all the points in the node have the same value for all the independent
variables, stop. Otherwise, search over all binary splits of all variables for
the one which will reduce S as much as possible. If the largest decrease in
S would be less than some threshold δ, or one of the resulting nodes would
contain less than q points, stop. Otherwise, take that split, creating two
new nodes.

3. In each new node, go back to step 1.

Trees use only one predictor (independent variable) at each step. If multiple
predictors are equally good, which one is chosen is basically a matter of chance.
(In the example, it turns out that Weight is just as good as Wheelbase: Figure
3.) When we come to multiple trees, two lectures from now, we’ll see a way of
actually exploiting this.

One problem with the straight-forward algorithm I’ve just given is that it
can stop too early, in the following sense. There can be variables which are
not very informative themselves, but which lead to very informative subsequent
splits. (When we were looking at interactions in the Usenet data, we saw that
the word “to” was not very informative on its own, but was highly informative
in combination with the word “cars”.) This suggests a problem with stopping

5

 Horsepower

<−0.2
 Weight

<−0.4 Horsepower

<−1.3 (9) Price = −1.6

>−1.3 (20) Price = −0.92

>−0.4 (9) Price = −0.16

>−0.2
 Horsepower

<0.6

 Wheelbase

<0.08 (14) Price = 0.055

>0.08 Wheelbase

<0.8 (6) Price = 0.82

>0.8 (15) Price = 0.25

>0.6 Horsepower

<1.4 (13) Price = 0.95

>1.4 (6) Price = 1.8

Figure 3: Another regression tree for the price of cars, where Weight was used
in place of Wheelbase at the second level. The two perform equally well.

6

when the decrease in S becomes less than some δ. Similar problems can arise
from arbitrarily setting a minimum number of points q per node.

A more successful approach to finding regression trees uses the idea of cross-
validation from last time. We randomly divide our data into a training set and
a testing set, as in the last lecture (say, 50% training and 50% testing). We then
apply the basic tree-growing algorithm to the training data only, with q = 1 and
δ = 0 — that is, we grow the largest tree we can. This is generally going to be
too large and will over-fit the data. We then use cross-validation to prune the
tree. At each pair of leaf nodes with a common parent, we evaluate the error
on the testing data, and see whether the sum of squares would be smaller by
remove those two nodes and making their parent a leaf. This is repeated until
pruning no longer improves the error on the testing data.

There are lots of other cross-validation tricks for trees. One cute one is to
alternate growing and pruning. We divide the data into two parts, as before, and
first grow and then prune the tree. We then exchange the role of the training
and testing sets, and try to grow our pruned tree to fit the second half. We then
prune again, on the first half. We keep alternating in this manner until the size
of the tree doesn’t change.

7

