Midterm Exam

36-350, Data Mining
SOLUTIONS

1. Wine recommendation

(a)

ANSWER: This is the same as creating a data frame from bags-of-
words. We have one feature for each distinct wine; it is 1 if the
member owns the wine and 0 otherwise. The number of features is
simply the total number of distinct wines.

For creating the data frame, the strategy used in the homework code
will work: use table to create a binary vector for each member, then
take the union of the different wines owned by the different members,
and, for each member, set the features for the wines they do not own
to zero. (Glossing over issues like how table will handle the spaces
in the names of wines is OK.)

Alternately, start by taking the union of all the wines all the drinkers
own, and then, for each drinker, go down the list of wines and put a
1 in the data frame if they own the wine and 0 if they do not.

(10 points) ANSWER: The most routine solution is to use the Eu-
clidean distance between two drinkers’ feature-vectors, normalizing
by either the total number of wines owned or by the Euclidean length
of the feature vectors, and weighting features (wines) by their IDF's.

(5 points) ANSWER: Writing n; for the number of drinkers who own
wine 4, and n for the total number of drinkers, the IDF w; = logn/n;.
Thus the IDF weight of “L’Inferno 00” is log5/3 = logh — log3 =
0.51. IDF should be useful because a shared enjoyment of unusual
wines (with high IDF) should be a better sign of similar tastes than
a shared enjoyment of common wines (which most people like).

(10 points) ANSWER: Take the k& most similar drinkers to the cus-
tomer, and take the union of all the wines they own. Remove the
wines already owned by the customer. If there are more than m
wines left, there are several reasonable selection strategies: pick the
wines with the lowest IDF weights (most popular), the highest IDF
weights (most distinctive), etc.

(Extra credit; 10 points) ANSWER: Before computing similarities, use
principal components on the feature vectors, and take the ¢ largest
components. (Chosing the right ¢ is hard here, and is really best

done by evaluating success.) Calculate similarities by the Euclidean
distances between PCA vectors. Then, having identified the most
similar drinkers to the customer, pick out the new wines as before.

2. k-Means Clustering

(a) (15 points) ANSWER: (i) Start a set of n vectors x1,xs,...z,. (i)
Assign each vector at random to one of the k clusters. (iii) For each
cluster, compute the mean of the vectors belong to that cluster. (iv)
For each vector, assign it to the cluster whose mean is closest to
it. (Do not recompute the means while these assignments are being
made.) (v) If any vectors have changed their cluster assignments, go
back to step (iii); if not, stop.

(b) (5 points) ANSWER: No. It can never give more clusters, since at
every stage every point is assigned to one of k clusters. To give
fewer than k clusters, we would need there to be a cluster which
got mo points at one of the re-assignment stages. This means that its
center would be farther from every point than one of the other cluster
centers. But since the center lies in between the points currently
assigned to the cluster, that’s not possible.

(¢) (5 points) ANSWER: For each cluster, it is the sum of the squared
distances of points in that cluster to their center, summed over clus-
ters. Writing C; for the points in cluster i, and m; for the mean of

cluster 1,
k
SS=>"3"|lz—mil?

i=1 xeC;

(d) (8 points) ANSWER: A reasonable guess here is 4; the sum of squares
goes up dramatically after that, but adding more than 4 clusters
does little to lower the sum of squares. Visually, k = 4 gives us four
compact, well-separated clusters with fairly clear divisions between
them, which is not true of either more or fewer clusters.
— In fact, the data were generated as a mixture from four differ-
ent Gaussians, centered at (—1,-1),(-1,1),(1,-1),(1,1), all with
0

0 1}

covariance matrices [

3. What’s That Got to Do with the Price of Houses in California?

(a) (6 points) ANSWER: MedianIncome is the obvious predictor, since it’s
most strongly correlated with the response variable MedianHouseValue.
Following that, MedianHouseAge, AveRooms and Latitude are all
possiblities, though AveRooms is reasonably correlated with MedianIncome
so it may be redundant. AveOccup is only very weakly correlated with
the response, and in fact very weakly correlated with everything else
as well, so it seems like an obvious candidate for dropping.

(b) (8 points) ANSWER: Linear regression can be defended on the grounds
that the bulk of the data seem to follow a roughly linear trend (ad-
mittedly with a big scatter), up to about the point where the diagonal
line crosses 500,000, at which point something rather funny seems to
happen to the data. The difference in fit between it and the kernel
smoother only really takes off at this point, and the latter includes
a very weird and implausible jog downward around MedianIncome
~ 12.

The kernel regression can be defended on the grounds that (i) the
fit really is better, (ii) the spread is so big that a specifically linear
trend is hard to justify, and (iii) the data are the data, and we should
be predicting them and not something else.

Both fits are not very good, and there is not only a lot of spread
around the trend lines, but the magnitude of the spread is variable.
This suggests that extra variables are worth trying — they should
improve the precision.

(¢) ANSWER: The first command does a principal components analysis of
the predictor variables (i.e., everything other than MedianHouseValue).
The function r2.with.q first regresses the response on the g largest
principal components, and then extracts the 2 of the regression. Fi-
nally, the last line calculates r? as a function of ¢ for ¢ from 1 to
8, and then plots it. Over-all, this is seeing how much of the vari-
ance in price can be predicted by regressing on the first ¢ principal
components of the independent variables.

This is not the same as a scree-plot, which shows how much of the
variance in the features themselves is predicted by the first ¢ principal
components.

Since r2 can only go up as the number of predictors increases, the plot

produced by these commands has to be the first one. (The second

one is, in fact, the scree plot for the PCA.)

(d) (6 points) ANSWER: It calculates summary statistics for each fea-
ture (column) of the data frame CaliforniaHousing. Notice that
AveRooms, AveBedrms, AveOccup and Houses all have the funny trait
of having a fairly small range from the 1st quartile to the 3rd quar-
tile, but a maximum which is immensely larger. Also, notice that the
average columns have minimums which are less than 1. This might
make sense for the average number of occupants per house, if enough
people own multiple houses, but there can’t be less than one room
or bed-room per house. So something’s fishy.

(e) (6 points) ANSWER: There is a huge spike in the histogram for me-
dian house value around $500,000. (Actually, looking at the summary
table, $500,001.) This is also evident from the scatter-plot with the
regression curves. This is very suspicious, and suggests top-coding,
where values above some cut-off are recorded as the maximum al-
lowed value. Similar spikes for median income and median house age

suggest the same problem. The histograms for the average number
of rooms, average number of bedrooms, average number of occupants
and total number of houses are all widly lopsided, with most of the
distirbution in a reasonably compact range, but a few outliers which
are much, much larger.

Implications: the regression results are going to be screwy. A per-
fectly linear relationship could be seriously messed up by top-coding
of the dependent variable (as well as the independent one). Also,
this will tend to deflate correlations, as will the presence of outliers.
(This may be why AveOccup has no correlation worth speaking of
with anything.) We need to either clean the data, or to use methods
which are more robust to this kind of ugliness.

— Incidentally, issues like top-coding, wildly implausible values, etc.,
are typical of large real-world data sets.

