
Homework 2: SOLUTIONS

36-350: Data Mining

1. Quantize the (R,G,B) cube with 8 prototypical colors:

Color Red Green Blue Color Red Green Blue
Black 0.25 0.25 0.25 Red 0.75 0.25 0.25
Green 0.25 0.75 0.25 Yellow 0.75 0.75 0.25
Blue 0.25 0.25 0.75 Magenta 0.75 0.25 0.75
Cyan 0.25 0.75 0.75 White 0.75 0.75 0.75

That is, each pixel’s RGB vector gets replaced by that of the closest pro-
totypical color.

Take a six-pixel image, with RGB values (0.22,0.37,0.8), (0.19,0.8,0.19),
(0.6,0.1,0.05), (0.8,0.3,0.22), (0.7,0.32,0.8), and (1,0.4,0.34). What is
the bag-of-colors representation of the image? What is the representation
after norming by Euclidean length?

Answer: The color labels of the points are, in order, “blue”, “green”,
“red”, “red”, “magenta” and “red”. The bag-of-colors representation
would thus be

blue green magenta red
1 1 1 3

before normalization and

blue green magenta red
0.29 0.29 0.29 0.87

after normalization.

2. Suppose we search for the image in question 1 via the color (0.7,0.2,0.2).
What is the bag-of-colors representation for this query, and what is the
query’s Euclidean distance from the image, after both have been divided by
Euclidean length?

Answer: The RGB values quantize to “red”. The bag-of-colors repre-
sentation is thus just

red
1

1

which is unchanged by Euclidean-length normalization. The Euclidean
distance is

√
3(0.29)2 + (0.87− 1)2 = 0.52.

3. Describe a potential problem in measuring distance if we use too many
prototypical colors in the representation (besides increased computation
and storage). Describe a potential problem if we use too few prototypical
colors in the representation.

Answer: Using too few colors will make too many images seem similar
to each other. It will reduce the precision of a query, since many irrelevant
results will be indistinguishable from relevant ones. Using too many col-
ors will make it seem, in our representation, as though images were very
different even when they are similar in every way which matters; it will
reduce recall, since many images which are relevant will not be retrieved.

4. Suppose we have a collection of 50 flower and 50 ocean images, and use
just three prototypical colors, red, green and blue. The flower images have
red and green but no blue, and the ocean images have green and blue but
no red. What are the inverse-picture-frequency (IPF) weights for the three
colors?

Answer: Green appears in every picture, so its IPF weight is log 100/100 =
0. Red and blue both appear in 50 out of 100 pictures, getting IPF weights
of log 100/50 = log 2.

5. Suppose the query vector is (1, 0, 0, 0) and there are two items in the
database, with vectors (3, 1, 1, 1) and (3, 2, 0, 0) (these might be documents
or images or something else). Which vector is closer to the query when
we normalize by the sums? Which one is closer when we normalize by the
Euclidean length? Does it matter whether we are talking about images or
documents? Why or why not?

Answer: The second vector is closer when normalizing by the sum, the
first vector when normalizing by the Euclidean length. The meaning of
the vectors is completely irrelevant to their distances, which only depend
on the numerical values of their components.

6. In a typical data mining application, a news agency wants to search through
video archives and detect all frames depicting an event, e.g. fireworks at
night, given some examples. You can regard a video as a sequence of im-
ages. How could this be implemented using similarity search? (Don’t give
code, just a brief description of the method.)

Answer: Construct an index, which would record the bag-of-colors vector
for each frame of each video. Then form the bag-of-colors vector of the
example, and start computing the distances between the example vector
and the vectors in the index. Take the k closest matches and use the
index to return the corresponding images (rather than their bag-of-colors
representations).

2

7. Recall that in nearest-neighbor classification, we guess that a new vector
belongs to the same class as the closest perviously-seen vector whose class
is known. In prototype classification, we represent each class by the
average of the vectors belonging to that class, and assign new vectors to
the class whose prototype is closests.

(a) Write an R function to do nearest-neighbor classification. Your func-
tion should tkae as inputs the vector to be classified, and a data frame
of labeled example vectors, and should give as its output the guessed
label of the new vector. You can re-use code from last time and from
the solutions. Remember to comment your code, and explain the
reasoning behind it.
Answer: Basically, this is almost the same as the function for
similarity searching from last time. We need to find the nearest
vector from a set of training vectors, which we can do with the
nearest.points function, and then look up the label of that closest
point in our vector of labels. Like last time, the function ends up
being basically a wrapper for nearest.points.

(b) Test the accuracy of your nearest-neighbor classifier on the news-
groups data from the last assignment. That is, what fraction of doc-
uments does it mis-classify? (You should use IDF weighting and
Euclidean-length normalization.) Include, with comments and expla-
nations, the code you used to calculate the error rate.
Answer: There were several appropriate procedures. The code ac-
companying this uses the leave-one-out method, where we go over the
documents and try to classify each one, using the other documents
as the labeled examples.

> leave.one.out.error(pol.rel,pol.rel.labels,method="nn")
$error.rate
[1] 0.375

$error.indices
[1] 1 2 3 6 7 8

The second output gives the row-numbers of the vectors which were
mis-classified.
The leave-one-out function in the code works for both the nearest-
neighbor classifier (when give the argument method="nn") and for the
prototype method (method="prototypes"), and is easily extended to
other classifiers.

(c) A simple mistake in the previous part would lead you to conclude that
nearest neighbor classification is always 100% accurate on any data
set. Describe the mistake, and how to avoid it.
Answer: The problem is including the document to be classified
among the labeled examples. Divide your data into training and test

3

parts before forming the bag-of-words data frame. Note that the
leave-one-out method automatically handles this.

(d) Write a function to do prototype classification. It should have the
same inputs and outputs as your nearest neighbor classifier. (Hint:
one way to do this is to use that function!)
Answer: Again, there are several ways to do this. Using the hint lets
us divide the problem into two parts: first, form prototype vectors for
each class. Then, treat those prototyp vectors as labeled examples,
and pass them to the nearest-neighbor classifier.
Forming the prototype vectors is just a matter of averaging all the
vectors with the same class label. R provides a function (aggregate)
to do this, but it’s also not hard to write one’s own, if so inclined.
(The solution code shows how.) We should apply the normalization
at this stage, otherwise we are just averaging word counts, and so
we have all the problems of comparing big documents to small docu-
ments again. However, this means that when we pass off the actual
classification job to the nearest-neighbor function, we have to be able
to tell it not to do that pre-processing over again.
This is a trickier step than some of the others, so it’s worth checking
that this function is working properly. I did this by constructing some
cases where I either knew the answer, or could check it working by
hand. One of them was just to give th prototype function one exam-
ple vector for each class (I used (1, 0) and (−1, 0) in two dimensions)
and check that it gave the right results. A slightly more ambitious
check was to give it a larger number of examples, but keeping the
same means for each class as in the previous check, and seeing that
it computed the right means (yes) and classified correctly (yes). As
a third check, I generated some random points in two dimensions,
assigned them classes depending on whether they were to the left or
the right of the y-axis, and let it classify the points.
The last check is a little subtle and deserves an extra word. The code
works when it does what the algorithm specifies, which may or may
not be to classify correctly. (That is, whether your implementation
works is a different question from whether your algorithm is right.)
Running the leave-one-out function on my random data, I saw that
one point was mis-classified. To see whether or not this was the
correct behavior, I found the two class means (holding that point
back), drew the line between them and then draw the perpendicular
bisector of that line. All the points with one label were to the right of
that line, and all the points with the other label were to its left, except
for the one mis-classified point. (See figure.) Since the algorithm mis-
classified that point, the code was working correctly.

(e) Calculate the error rate of your prototype classifier.
Answer: Using the leave-one-out method,

4

-5 0 5

-5
0

5

v1

v2

Figure 1: Checking example for the prototype classifier. Twenty random points
with v1 and v2 coodinates uniformly distributed between −10 and 10. Those to
the left of the v2 axis (ten in all) get one class label, the dot, those on the right
the other label, the diamond. The sample means of the two classes are marked
in red. When the point at (−3.5,−8.7) is held out, the mean of one class shifts,
but not the other; the means under hold-out are shown in blue, along with the
mid-point between them, and the perpendicular bisector of the line segment
joining them (blue line). Since the point in question falls to the right of that
line, the prototype method guesses it belongs to the diamond class, rather than
the dot class. The prototype.classifier function classifies it in this way, so
even though it’s substantively wrong it’s correctly implementing the algorithm.

5

leave.one.out.error(pol.rel,pol.rel.labels,method="prototypes")
$error.rate
[1] 0.3125

$error.indices
[1] 1 2 3 8 13

Note that the result here is very sensitive to whether or not words
which appeared in only one document were omitted in making the
data frame. If they’re kept, the error rate of the prototype method
goes up to 0.5625. (The words are rare, so they have large IDF
weights, but that makes a new document seem further from the av-
erage of old ones in the same class than we’d like it to be.)

6

