
Homework 4

36-350: Data Mining

SOLUTIONS

1. Similarity searching for cells

(a) How many features are there in the raw data? Are they discrete or
continuous? (If there are some of each, which is which?) If some are
continuous, are they necessarily positive?
Answer: This depends on whether the cell classes are counted as
features or not; you could defend either answer. If you don’t count
the cell class, there are 6830 continuous features. Since they are
logarithms, they do not have to be positive. If you do count the
class, there are 6831 features, one of which is discrete (the class).
I am inclined not to count the clas as really being a feature, since
when we get new data it may not have the label.

(b) Describe a method for finding the k cells whose expression profiles
are most similar to that of a given cell. Carefully explain what you
mean by “similar”. How could you evaluate the success of the search
algorithm?
Answer: The simplest approach would be to say that two cells are
similar if their vectors of expression levels have a small Euclidean dis-
tance. The most similar cells are the ones whose epxression-profile
vectors are closest, geometrically, to the target expression profile vec-
tor.
There are several ways the search could be evaluated. One would be
to use the given cell labels as an indication of whether the search re-
sults are “relevant”. That is, one would look at the k closest matches
and see (a) what fraction of them are of the same type as the tar-
get, which is the precision, and (b) what fraction of cells of that type
are in the search results (the recall). Plotting the precision and recall
against k gives an indication of how efficient the search is. This could
then be averaged over all the labeled cells.
Normalizing the vectors by the Euclidean length is possible here,
though a little tricky because the features are the logarithms of the
concentration levels, so some of them can be negative numbers, mean-
ing that very little of that gene is being expressed. Also, the reason
for normalizing bag-of-words vectors by length was the idea that two
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documents might have similar meanings or subjects even if they had
different sizes. A cell which is expressing all the genes at a low level,
however, might well be very different from one which is expressing
the same genes at a high level.

(c) Would it make sense to weight genes by “inverse cell frequency”?
Explain.
Answer: No; or at least, I don’t see how. Every gene is expressed to
some degree by every cell (otherwise the logarithm of its concentration
would be −∞), so every gene would have an inverse cell frequency of
zero.
However, a related idea would be to scale genes’ expression levels by
something which indicates how much they vary across cells, such as
the range or the variance. Since we have labeled cell types here, we
could even compute the average expression level for each type and
then scale genes by the variance of these type-averages. That is, genes
with a small variance (or range, etc.) should get small weights, since
they are presumably uninformative, and genes with a large variance
in epxression level should get larger weights.
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2. The file nci.kmeans records the true cell type and the result of running
the k-means algorithm on the data three different times, each time with
k = 14. (The R command for this is kmeans.)

(a) For each run, calculate the number of errors made by k-means, i.e.,
how many pairs of cells of the same type are in different clusters, and
how many pairs of cells of different types are in the same cluster.
Answer: This can be done by hand, but it’s easiest to do with some
code. For each pair of cells, we need to check whether they have the
same true class but are in different clusters (call that a type I error),
or have different true classes but are in the same cluster (call that a
type II error). Note that we only have to check distinct pairs of cells
— so having checked whether cell 1 and cell 2 give us an error, we
don’t have to check again for cell 2 and cell 1. Nor do we have to
check cell 1 against cell 1.
Here is the most straightforward way to do it. (A more R-ish solution
would replace the two explicit for loops with vectorized calculations.)

count.clustering.errors <- function(true.classes,inferred.clusters) {
# Should double-check that the two input vectors have the same length!
n = length(true.classes)
# Always a good idea to explicitly declare counters
type.i.errors = 0
type.ii.errors = 0
for (i in 1:(n-1)) {
for (j in (i+1):n) {
if ((true.classes[i] == true.classes[j])

& (inferred.clusters[i] != inferred.clusters[j])) {
type.i.errors = type.i.errors +1

}
if ((true.classes[i] != true.classes[j])

& (inferred.clusters[i] == inferred.clusters[j])) {
type.ii.errors = type.ii.errors +1

}
}

}
total.errors = type.i.errors + type.ii.errors
n.distinct.pairs = n*(n-1)/2
total.error.rate = total.errors/n.distinct.pairs
return(list(type.i.errors=type.i.errors,type.ii.errors=type.ii.errors,

total.errors=total.errors,total.error.rate=total.error.rate)
}

The problem statement just asks for a count of errors. The function
also calculates the error rate, i.e., the ratio of mis-clustered pairs to
the total number of pairs. (That total is n(n − 1)/2 because there
are n choices for the first cell in the pair, followed by n − 1 choices
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for the second pair; but this counts each pair twice, once as i, j and
once as j, i, so we need to divide by two.)
Let’s try this out before using this for a real answer. The first com-
mand loads them in a data frame. (The skip=2 argument tells it
to skip the first two lines, then header=TRUE lets it know that the
first line to read names the columns, rather than containing actual
data.) The second one checks the dimensions of the data frame to
make sure everything worked (it did — 64 rows by 4 columns). Then
I print out the first four rows. In this case I can work out the right
answer by hand: cells 1 and 2 are correctly groups together by the
clusterA results, but cells 1 and 2 are incorrectly separated from cell
3 — so that’s two type I errors. Cell 3 is in turn incorrectly clustered
together with cell 4, a type II error. So if I run my function on the
first four columns of clusterA column, I should get a 2 type I errors
and 1 type II error.

> nci.kmeans = read.table("nci.kmeans",skip=2,header=TRUE)
> dim(nci.kmean) # check for sane dimensions
[1] 64 4
> nci.kmeans[1:4,]

type clusterA clusterB clusterC
1 CNS 11 3 12
2 CNS 11 3 12
3 CNS 13 3 12
4 RENAL 13 3 9
> count.clustering.errors(nci.kmeans$type[1:4],nci.kmeans$clusterA[1:4])
$type.i.errors
[1] 2
$type.ii.errors
[1] 1
$total.errors
[1] 3
$total.error.rate
[1] 0.5

Having gotten some confidence in the function, let’s run it for real
on each column.

> count.clustering.errors(nci.kmeans$type,nci.kmeans$clusterA)
$type.i.errors
[1] 100
$type.ii.errors
[1] 97
$total.errors
[1] 197
$total.error.rate
[1] 0.09771825
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Summarizing the results for all three runs
Run Type I Type II Total
A 100 97 197
B 106 79 185
C 109 182 191
Mean± sd 105± 5 119± 55 191pm6

(b) Is one kind of error more frequent in all three runs?
Answer: Type I errors — putting cells which are in the same class
into different clusters — are more common than type II errors (other
way around).

(c) Are there any classes which seem particularly hard for k-means to
pick up?
Answer: It’s possible to answer this question impressionistically,
but also quantitatively.
Start by making a table which counts how often cells of each type
appear in each cluster.

> table(nci.kmeans$type,nci.kmeans$clusterA)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BREAST 0 0 0 0 2 0 0 0 2 0 0 0 2 1
CNS 0 0 0 0 0 0 0 0 0 0 2 0 3 0
COLON 0 0 0 1 0 0 0 0 0 0 0 6 0 0
K562A 0 0 0 0 0 0 0 0 1 0 0 0 0 0
K562B 0 0 0 0 0 0 0 0 1 0 0 0 0 0
LEUKEMIA 0 0 0 0 0 0 4 0 2 0 0 0 0 0
MCF7A 0 0 0 0 0 0 0 0 1 0 0 0 0 0
MCF7D 0 0 0 0 0 0 0 0 1 0 0 0 0 0
MELANOMA 1 0 6 0 0 1 0 0 0 0 0 0 0 0
NSCLC 0 0 0 4 0 1 0 1 0 2 0 0 0 1
OVARIAN 0 0 0 5 0 1 0 0 0 0 0 0 0 0
PROSTATE 0 0 0 2 0 0 0 0 0 0 0 0 0 0
RENAL 0 7 0 0 0 1 0 0 0 0 0 0 1 0
UNKNOWN 0 0 0 0 0 1 0 0 0 0 0 0 0 0

A cell type is easy for clustering to detect if it always, or for the
most part, appears in one the same cluster. Looking at the table, for
instance, it looks like renal cancer is fairly easy to detect as a cluster
(7 of 9 cases in cluster 2), but breast cancer is harder (spread evenly
over four clusters). Let’s divide the counts in each row by the total
number of cells in that row — this will give us more sense of how
concentrated the results are in different clusters

> round(t(apply(table(nci.kmeans$type,nci.kmeans$clusterA),1,
function(x){x/sum(x)})),digits=2)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
BREAST 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.29 0.00 0.0 0.00 0.29 0.14
CNS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.4 0.00 0.60 0.00
COLON 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.86 0.00 0.00
K562A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.0 0.00 0.00 0.00
K562B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.0 0.00 0.00 0.00
LEUKEMIA 0.00 0.00 0.00 0.00 0.00 0.00 0.67 0.00 0.33 0.00 0.0 0.00 0.00 0.00
MCF7A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.0 0.00 0.00 0.00
MCF7D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.0 0.00 0.00 0.00
MELANOMA 0.12 0.00 0.75 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00
NSCLC 0.00 0.00 0.00 0.44 0.00 0.11 0.00 0.11 0.00 0.22 0.0 0.00 0.00 0.11
OVARIAN 0.00 0.00 0.00 0.83 0.00 0.17 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00
PROSTATE 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00
RENAL 0.00 0.78 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.0 0.00 0.11 0.00
UNKNOWN 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00

So the type BREAST is not well-clustered, nor is CNS (almost evenly
split between two clusters), and NSCLC is especially bad. Types
K562A, K562B, MCF7A, MCF7D and Unknown seem well-clustered,
but there’s only one example of each so that hardly counts.
Another way to do this is to look at the entropy of the inferred
clusters for each cell type. First define an entropy function:

entropy.from.counts <- function(x) {
# Normalize to get a distribution
p = x/sum(x)
# Discard the zero-probability entries
p = p[p>0]
entropy=-sum(p*log(p,base=2))
return(entropy)
}

Now apply it to the cross-classification table.

> round(apply(table(nci.kmeans$type,nci.kmeans$clusterA),1,entropy.from.counts),2)
BREAST CNS COLON K562A K562B LEUKEMIA MCF7A MCF7D MELANOMA NSCLC
1.95 0.97 0.59 0.00 0.00 0.92 0.00 0.00 1.06 2.06

OVARIAN PROSTATE RENAL UNKNOWN
0.65 0.00 0.99 0.00

This is just looking at clusterA results, but we can average the en-
tropies across the three clustering runs.

> table.A = table(nci.kmeans$type,nci.kmeans$clusterA)
> entropies.A = apply(table.A,1,entropy.from.counts)
> table.B = table(nci.kmeans$type,nci.kmeans$clusterB)
> entropies.B = apply(table.B,1,entropy.from.counts)
> table.C = table(nci.kmeans$type,nci.kmeans$clusterC)
> entropies.C = apply(table.C,1,entropy.from.counts)
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> clustering.entropies = rbind(entropies.A,entropies.B,entropies.C)
> apply(clustering.entropies,2,mean)

BREAST CNS COLON K562A K562B LEUKEMIA MCF7A MCF7D
1.9502121 0.8879431 0.5916728 0.0000000 0.0000000 1.1622047 0.0000000 0.0000000
MELANOMA NSCLC OVARIAN PROSTATE RENAL UNKNOWN
1.0612781 1.9847398 0.8505580 0.0000000 1.2418562 0.0000000

So, the BREAST and NSCLC types are the hardest to cluster acc-
cording to this, followed by RENAL and LEUKEMIA.

(d) Are there any pairs of cells which are always clustered together, and
if so, are they of the same class?
Answer: There are many cells which are always clustered together
(at least in these three runs), but they are not always of the same
class. Cells 1 and 2 are clustered together and are of the same class;
cells 4 and 5 are clustered together but are of different classes.
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3. Figures 1 and 2 show hierarchical clusterings of the data. (The R command
used was hclust, with method set to ward or single.)

(a) Which cell classes seem to be best captured by each clustering method?
Answer: Ward’s method does well on MELANOMA (near middle of
plot) and COLON (near bottom). There are also some sub-clusters
of OVARIAN, BREAST and NSCLC. The single-link method again
does well with MELANOMA and COLON.

(b) Figure 3 shows the merging-cost curve for Ward’s method. How many
clusters does this suggest?
Answer: There are peaks around k = 40, k = 20 and k = 10.

(c) Which method does a better job of capturing the cell classes? (Justify
your answer.)
Answer: The single-link method looks better — scanning down the
figure, a lot more of the adjacent cells are of the same type. Since
the dendrogram puts items in the same sub-cluster together, this
suggests that the clustering more nearly corresponds to the known
cell types.

(d) Suppose you did not know the cell classes. Can you think of any
reason to prefer one clustering method over another here, based on
their outputs and the rest of what you know about the problem?
Answer: I can’t think of anything very compelling.
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4. Figure 4 shows the fraction of the total variance (R2) described by the first
k principal components, as a function of k.

(a) How (if at all) is this different from a scree plot?
Answer: This shows the cumulative sum of the eigenvalues, rather
than the eigenvalues themselves. The scree plot would be obtained
by taking the differences between successive pointsin this figure.

(b) Roughly how much variance is captured by the first two principal com-
ponents?
Answer: A bit more than 20% of the variance, say about 25%.

(c) Roughly how many components must be used to capture half of the
variance? To capture nine-tenths?
Answer: 10; 30.

(d) Is there any point to using more than 50 components? (Justify your
answer.)
Answer: There’s very little point from the point of view of captur-
ing variance. The error in reconstructing the expression levels from
using 50 components is already extremely small. However, there’s no
guarantee that, in some other application, the information carried by
the 55th component (say) wouldn’t be crucial.

(e) How much confidence should you have in results from visualizing the
first two principal components?
Answer: Very little; the first two components represent only a small
part of the total variance.

5. Figure 5 shows the projection of the 64 cells on to the first two principal
components.

(a) One tumor class (at least) forms a cluster in the projection. Say
which, and explain your answer.
Answer: MELANOMA; most of the cells cluster in the bottom-
center of the figure (PC1 about 0, PC2 between -2 and -8), with only
a few non-MELANOMA cells among them, and a big gap to the rest
of the data. One could also argue for LEUKEMIA in the upper left.

(b) Identify a tumor class which does not form a compact cluster.
Answer: Most of them don’t. What I had in mind though was
BREAST, which is very widely spread.

(c) Of the two classes of tumors you have just named, which will be more
easily classified with the prototype method? With the nearest neighbor
method?
Answer: BREAST will be badly classified using the prototype method.
The prototype will be around the middle of the plot, where there are
no breast-cancer cells. Nearest-neighbors can hardly do worse. On
the other hand, MELANOMA should work better with the prototype
method, because it forms a compact blob.
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6. The file nci.pca2.kmeans contains the results of running the k-means
algorithm three times on the PCA-projected data, with k = 14. (As the
name indicates, this used just the first two principal components.)

(a) Calculate the number of errors, as with the k-means clustering based
on all 100 genes.
Answer:

> nci.pca2.kmeans = read.table("nci.pca2.kmeans",skip=2,header=TRUE)
> count.clustering.errors(nci.pca2.kmeans$type,nci.pca2.kmeans$clusterA)
$type.i.errors
[1] 115
$type.ii.errors
[1] 79
$total.errors
[1] 194

Summarizing, here are the results over all three cases.
Run Type I Type II Total
A 115 79 194
B 125 94 219
C 142 146 288
Mean ± sd 127± 13 106± 35 233± 47

For comparison, the counts of type I and type II errors obtained using
the full set of genes were 105 ± 5 and 119 ± 55. So by eliminating
most of the features we have increased the type I error rate a little,
with basically no change to the type II error rate.

(b) Are there any pairs of cells which are always clustered together? If
so, do they have the same cell type?
Answer: Cells 1 and 3 are always clustered together, with type
CNS. Cells 4 and 5, BREAST and RENAL, are also always clustered
together.

(c) Does k-means find a cluster corresponding to the cell type you thought
would be especially easy to identify in the previous problem? (Explain
your answer.)
Answer: Cluster 9 in run A and cluster 5 in run B consist exclu-
sively of MELANOMA cells. However, there are some MELANOMA
cells outside this cluster, and in run C it gets split into two clusters
(numbers 4 and 8). Still, this is a pretty good match, as might be
excepted.

(d) Does k-means find a cluster corresponding to the cell type you thought
be be especially hard to identify?
Answer: No. If we do a table again,

> table(nci.pca2.kmeans$type,nci.pca2.kmeans$clusterA)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
BREAST 2 2 0 2 0 0 0 0 0 0 0 0 0 1
CNS 0 0 0 0 0 0 0 0 0 5 0 0 0 0
COLON 0 0 0 0 1 0 0 0 0 0 0 0 6 0
K562A 0 0 0 0 0 0 0 0 0 0 1 0 0 0
K562B 0 0 0 0 0 0 0 0 0 0 1 0 0 0
LEUKEMIA 0 0 0 0 0 2 1 0 0 0 3 0 0 0
MCF7A 0 0 0 1 0 0 0 0 0 0 0 0 0 0
MCF7D 0 0 0 1 0 0 0 0 0 0 0 0 0 0
MELANOMA 0 1 0 0 0 0 0 0 6 0 0 1 0 0
NSCLC 1 0 1 0 0 0 3 0 0 1 0 2 0 1
OVARIAN 0 0 4 0 0 0 0 1 0 0 0 1 0 0
PROSTATE 0 0 0 0 0 0 0 0 0 0 0 1 1 0
RENAL 1 0 0 0 0 0 0 2 0 0 0 5 0 1
UNKNOWN 0 0 0 0 0 0 0 1 0 0 0 0 0 0

we see that BREAST is spread (in this run) over 4 clusters, and
doesn’t even dominate any of those clusters. So it doesn’t correspond
to a cluster.
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7. Install the library ElemStatLearn from CRAN and call up the data set
with the command data(nci). This is set up so that each column is a
different cell, and the column names are the cell classes. You will want to
transpose this so that the cells are rows and the genes are columns.

(a) Use prcomp to do a principal components analysis of the complete
set of genes. What are the first eight eigenvalues? Should you set
scale.=TRUE? Explain your reasoning.
Answer: Here’s how I do the PCA.

> library(ElemStatLearn)
> data(nci)
> nci.t = t(nci)
> nci.pca = prcomp(nci.t)
> nci.pca.scaled = prcomp(nci.t,scale.=TRUE)
> nci.pca$sdev[1:8]^2
[1] 633.2156 352.9278 279.9189 183.0830 163.5573 149.0968 122.2882 119.7912
> nci.pca.scaled$sdev[1:8]^2
[1] 775.8157 461.4486 392.8508 290.1080 255.0986 247.1524 209.4230 183.4472

As for whether or not to use scaling, both answers are defensible. To
argue against scaling, notice that:
• the units in which all the features are measured here are com-

parable (log molecular concentrations), unlike some of the data
sets where we’d be comparing feet to dollars, or days of frost to
homicides;

• without scaling, while the first eigenvector is larger than the
others (naturally!), it’s not overwhelmingly larger

• The variances of the individual features are mostly within a fairly
small range, and even the hugest of them isn’t vastly larger than
the others.
> summary(apply(nci.t,2,var))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.04056 0.20890 0.31930 0.62250 0.64470 11.72000

To argue for scaling, notice that
• there are a few features with variances a few times larger or

smaller than the rest, and they could cause trouble; why give
them the opportunity?

• the differences between cells may depend on whether the lie in
each gene’s expression spectrum, so even though the units are
physically comparable across features, a 1 unit change in feature
7 may not have the same importance as a 1 unit change in feature
563.

(b) Write a function to print cell class labels against the projections on
to the first two components. How different does the output look from
Figure 5? Are the same clusters visible in your plot as in the figure?
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Answer:

Here is a solution based on the code in Lecture 14.

plot.labels.pca.1 <- function(fitted.pca,...) {
x = fitted.pca$x[,1]
y = fitted.pca$x[,2]
labels = rownames(fitted.pca$x)
plot.new()
plot.window(xlim=range(x),ylim=range(y))
text(x,y,labels,...)
axis(1)
axis(2)

}

The ... lets me pass extra graphical arguments to the text-plotting
function text. For instance, I can control the size of the labels with
the cex argument (Figure 6).

> plot.labels.pca.1(nci.pca,cex=0.75)

Much the same effect can be had changing the options on the biplot
function.

biplot(nci.pca,cex=c(1,0.001),expand=0.00001)

Here the cex=c(1,0.001) argument tells R to shrink the text for the
labels of the feature-arrows by a factor of 1000. Similarly the length
of the feature-arrows is to be expanded by a factor of 0.00001 (i.e.,
shrunk 100,000 times). The result is a very small red dot just visible
in the center of the plot. It does, however, take a while, since R
is still drawing and labeling 6830 minute arrows. I omit this figure
from the solutions, because it takes forever to actually print, though
R will render it on the screen in a minute or two.

(c) Calculate the error rate of the prototype method using all the gene
features, using the leave-one-out estimate. You may use the solution
code from homework 2, or your own code. (Note: this may take
several minutes to run. [Why so slow?])
Answer:

> leave.one.out.error(nci.t,rownames(nci.t),method="prototypes",
preproc=FALSE)

$error.rate
[1] 0.421875

I set preproc=FALSE because I do not want to use inverse “document”
frequency or Euclidean length normalization.
The calculation takes 10 minutes on my computer. The reason is
that my code isn’t optimized. When I hold back a data point, that
changes the prototype for only one class. However, to make the code
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simpler, my function re-calculates the prototypes for all classes every
time. Since there are 14 classes, 6830 features, and 64 cells, it ends up
doing 14 ∗ 6830 ∗ 64 = 6,119,680 averages. A more efficient program
would calculate prototypes for all classes with all data (14 ∗ 6830 =
95,620 averages), and then adjust the prototype only for the class of
the held-out cell (64 ∗ 6830 = 437,120 subtractions).

(d) Calculate the error rate of the prototype method using the first two,
ten and twenty principal components. Include the R commands you
used to do this.
Answer: To call the leave.one.out.error function, we need a
data matrix and a vector of classes.

> leave.one.out.error(nci.pca$x[,1:2],rownames(nci.t),method="prototypes",
preproc=FALSE)

$error.rate
[1] 0.578125

nci.pca$x[,1:2] gives the first two columns of PCA scores for each
cell. I set preproc=FALSE because I don’t want to use Euclidean
length normalization or inverse ”document” frequency weighting. (The
function also provides the row-numbers of the data points where the
classifier makes an error, but I’ve left them out here.) Similarly

> leave.one.out.error(nci.pca$x[,1:10],rownames(nci.t),method="prototypes",
preproc=FALSE)$error.rate

[1] 0.484375
> leave.one.out.error(nci.pca$x[,1:20],rownames(nci.t),method="prototypes",

preproc=FALSE)$error.rate
[1] 0.40625

Notice that with 20 principal components we have a better error rate
than if we used the whole data.
If I use the scaled PCA instead, I get error rates of 0.67, 0.5 and 0.41
instead.

(e) (Extra credit.) Plot the error rate, as in the previous part, against the
number q of principal components used, for q from 2 to 64. Include
your code and comment on the graph. (Hint: Write a function to
calculate the error rate for arbitrary q, and use sapply.)
Answer: Take what we did in the last part and turn it into a func-
tion.

proto.error.q = function(q) {
first.q.pcs = nci.pca$x[,1:q]
true.classes = rownames(nci.pca$x)
L1OE = leave.one.out.error(first.q.pcs,true.classes,

method="prototypes",
preproc=FALSE)
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return(L1OE$error.rate)
}

Quick check of whether this works:

> proto.error.q(2)
[1] 0.578125
> proto.error.q(10)
[1] 0.484375

These match what we saw in the previous part, so the function seems
to be working properly.
Now calculate it for all q in the range, and plot (Figure 7).

error.rate.vs.pcs = sapply(2:64,proto.error.q)
plot(2:64,error.rate.vs.pcs,

xlab="number of principal components",ylab="error rate",type="b",
ylim=c(0,0.6))

abline(h=0.421875,lty=2)

The dashed line shows the error rate when using all the features.
Notice that this is larger than the error rate with ≈ 15 principal
components.
If you scaled the features before extracting the principal components,
the same solution works.

proto.error.scaled.q = function(q) {
first.q.pcs = nci.pca.scaled$x[,1:q]
true.classes = rownames(nci.pca.scaled$x)
L1OE = leave.one.out.error(first.q.pcs,true.classes,

method="prototypes",
preproc=FALSE)

return(L1OE$error.rate)
}

(Since the code is almost exactly the same, it would be better practice
to change the function to take two arguments, q and the PCA scores
matrix, rather have two functions.)

points(2:64,sapply(2:64,proto.error.scaled.q),pch=23)

This adds the new points to the existing plot, but marks the points
with diamonds instead of circles. (Calculating the data-points in the
plotting command itself means less code, and fewer objects in the
workspace, but it also means extra time re-plotting, so I don’t rec-
ommend it unless you’re sure you’ve got all your graphics options
nailed down.) Scaling leads to very similar error rates, though gen-
erally somewhat higher, especially in the region q ≈ 15.
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Figure 7: Solution to extra credit part of problem 7, using only unscaled prin-
cipal components.
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Figure 8: Solution to extra credit part of problem 7, using both unscaled and
scaled principal components (circles and diamonds, respectively).
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