
Homework Assignment 5

36-350, Data Mining

Solutions

1. (a) Show that

fk(xk) = E

Y − α−
∑
j 6=k

fj(Xj)

∣∣∣∣∣∣ Xk = xk

i.e., the function fk is the conditional expectation of the partial resid-
uals. Hint: Use smoothing, a.k.a. the law of total expectation.
Answer: The law of total expectation says that, for any three ran-
dom variables X, Y and Z, E [Y |X = x] = E [E [Y |Z,X = x] |X = x].
Applied here,

E [Y |Xk = xk] = E [E [Y |X1 = x1, X2 = x2, . . . Xp = xp] |Xk = xk]
(1)

Under the additive model, we know what the inner conditional ex-
pectation is,

E [Y |X1 = x1, X2 = x2, . . . Xp = xp] = α +
p∑

j=1

fj(xj) (2)

So

E [Y |Xk = xk] = E

α +
p∑

j=1

fj(xj)

∣∣∣∣∣∣ Xk = xk

 (3)

Therefore

E

Y − α−
∑
j 6=k

fj(Xj)

∣∣∣∣∣∣ Xk = xk

= E

α +
p∑

j=1

fj(xj)− α−
∑
j 6=k

fj(Xj)

∣∣∣∣∣∣ Xk = xk

 (4)

= E [fk(Xk)|Xk = xk] (5)
= f(xk) (6)

QED.

1

(b) Write a function to implement the following back-fitting procedure
for estimating additive models.
Answer: As mentioned in class, one can do this either in a simple
way, estimating only the values of the functions at the sample points,
or in a more sophisticated way estimating the whole functions.
Here is the simple way. It encapsulates the actual estimation in
another function, centered.smoothing, which we’ll write later. (For
fully-commented code, see solutions-05.R online.)

addm.points = function(y,x,tolerance=sd(y)/sqrt(length(y)),max.passes=10) {
alpha = mean(y)
p = ncol(x)
n = nrow(x)
f = matrix(0,nrow=n,ncol=p)
y.pred = rep(alpha,n) # Initially, we always predict the mean

max.iterations = max.passes*p
made.changes = TRUE
iterations = 0
j = 0
while(made.changes & (iterations < max.iterations)) {
iterations = iterations + 1
j = ifelse(j == p,1,j+1)
partial.residuals = y - (y.pred - f[,j])
new.fj = centered.smoothing(x[,j],partial.residuals)
new.y.pred = y.pred + (new.fj - f[,j])
f[,j] = new.fj
number.changes = sum(abs(new.y.pred - y.pred) > tolerance)
made.changes = (number.changes > 0)
y.pred = new.y.pred

}
if (made.changes) {
warning("Exited addm.points before backfitting converged")

}
return(list(mean.response=alpha,partial.responses=f,

fitted=alpha+apply(f,1,sum),x=x,y=y,
iterations=iterations,converged=!made.changes,tolerance=tolerance,
max.iterations=max.iterations))

}

We still need to do the actual smoothing! We’ll use ksmooth. The
one trick is that it returns its predictions in order of increasing x, for
plotting, so we need to re-order them. This is a job for yet another
function.

2

centered.smoothing = function(x,y) {
g = ksmooth(x,y,kernel="normal",n.points=length(x),x.points=x)$y
unsort.x = inverse.permutation(order(x))
g = g[unsort.x] # puts g back into data order
return(g - mean(g))

}

inverse.permutation = function(forward.permutation) {
match() returns the indices of the first occurrences of its first argument
its second argument. See solutions-05.R for a (slower) approach which
doesn’t use this.
inv.perm = match(1:length(forward.permutation),forward.permutation)
return(inv.perm)

}

Let’s check that this works:

> z = round(rnorm(10),2)
> z
[1] 0.37 0.14 0.81 -0.52 0.28 0.48 0.03 -1.91 0.73 0.17
> z[order(z)]
[1] -1.91 -0.52 0.03 0.14 0.17 0.28 0.37 0.48 0.73 0.81
> inverse.permutation(order(z))
[1] 7 4 10 2 6 8 3 1 9 5
> sort(z)[inverse.permutation(order(z))]
[1] 0.37 0.14 0.81 -0.52 0.28 0.48 0.03 -1.91 0.73 0.17

(I stick in the initial round() for brevity.) So, inverse.permutation
seems to work. We can also check whether centered.smoothing is
behaving sensibly:

> z2 = z^2 - mean(z^2)
> round(z2,2)
[1] -0.43 -0.54 0.09 -0.29 -0.48 -0.33 -0.56 3.09 -0.02 -0.53
> z2.ksmooth = ksmooth(z,z2,kernel="normal",n.points=length(z),x.points=z)$y
> round(z2.ksmooth-mean(z2.ksmooth),2)
[1] 3.10 -0.28 -0.52 -0.50 -0.50 -0.46 -0.43 -0.35 -0.06 -0.01
> round(centered.smoothing(z,z2),2)
[1] -0.43 -0.50 -0.01 -0.28 -0.46 -0.35 -0.52 3.10 -0.06 -0.50

Here z2 is a centered version of z2, and we see that just using ksmooth
messes up the order, while centered.smoothing does not.
Alternately, we could just use a smoothing function with a prediction
method:

centered.smoothing = function(x,y) {
g = predict(loess(y ~ x))
return(g - mean(g))

}

3

and then we wouldn’t have to worry about the order.
We still should check that the over-all function works. To make things
reasonably challenging, but still plottable, let Y |X1 = x1, X2 = x2

will be Gaussian, with a mean of x2
1 +3 tanhx2 and a standard devi-

ation of 0.1. The inputs X1 and X2 themselves will be uncorrelated
standard Gaussians.

x = matrix(rnorm(100),ncol=2)
y = x[,1]^2 + 3*tanh(x[,2]) + rnorm(50,0,0.1)
fit = addm.points(y,x)
par(mfrow= c(2,1))
plot(x[,1],fit$partial.response[,1],

xlab=expression(x[1]),ylab=expression(hat(f)[1]))
curve(x^2-1,add=TRUE)
plot(x[,2],fit$partial.response[,2],

xlab=expression(x[2]),ylab=expression(hat(f)[2]))
curve(3*tanh(x) - mean(3*tanh(rnorm(1e4))), add=TRUE)

The last commands plot the estimated partial response functions
against the true partial response functions. (Remember our con-
vention that each of these has mean zero. The mean of x2 when
x ∼ N (0, 1) is easy to calculate, and while the mean of 3 tanhx is
not so easy to calculate, we can get it by simulating.) Figure 1 shows
the results.

4

-2 -1 0 1 2

-1
1

3

x1

f̂ 1

-2 -1 0 1 2

-3
-1

1

x2

f̂ 2

Figure 1: True partial response functions (curves) and estimated partial re-
sponse functions (dots) from the model Y = X2

1 +3 tanhX2 + ε, ε ∼ N (0, 0.01).
Estimation was done with the addm.simple function with default settings. In
both cases the true partial-response curves have been centered to have mean
zero.

5

Now for the subtler solution, which, rather than using just estimating
values at particular points, estimates whole functions. We can’t do
this so easily with ksmooth, because it doesn’t return the right kind
of object, but we can do it with loess. (There are several packages,
e.g., lokern and np, which do kernel smoothing and return func-
tion objects, and in Problem 2b we’ll see how to fake it even with
ksmooth.) This involves more advanced R programming. In partic-
ular we’ll want our function to return a new type of object, which I’ll
call addm. It will contain a list of the partial response functions, a
mean response, and a matrix of input values. We may also want to
add other elements to the list.
First, define a function which constructs an object of this type.

make.addm = function(partial.responses,mean.response,x,...) {
my.addm = list(partial.responses=partial.responses,

mean.response=mean.response,x=x,...)
class(my.addm) = "addm"
return(my.addm)

}

Now we’ll define a predictor function, which is what we ultimately
want.

predict.addm = function(am,newdata=am$x) {
p = ncol(newdata)
n = nrow(newdata)
alpha = am$mean.response
f = am$partial.responses
f.matrix = matrix(0,nrow=n,ncol=p)
for (j in (1:p)) {
f.matrix[,j] = f[[j]](newdata[,j])

}
y.pred = alpha + apply(f.matrix,1,sum)
return(y.pred)

}

Now if we use make.addm to create an additive model object, say am,
if we call predict(am,newdata=x), R will know to look for a function
named predict.addm. Since it finds what we just wrote, it will use
it to calculate predictions on x. This is just like making predictions
with a linear model.
Now for the actual estimator.1

1Because the two estimator functions are so very similar, it would be better coding practice
to “re-factor” the programs, by extracting the common parts, and putting in a switch which
controlled whether to use a list of functions or a matrix of function values. This sort of good
coding saves work in the long run, but requires more initial set-up, so I’m not going to do it
here.

6

addm.functions = function(y,x,tolerance=sd(y)/sqrt(length(y)),max.passes=10) {
alpha = mean(y)
p = ncol(x)
n = nrow(x)

constant.0.fn = function(x) {return(rep(0,length(x)))}
f = list(constant.0.fn)
for (j in (2:p)) { f[[j]] = constant.0.fn }
y.pred = rep(alpha,n)

max.iterations = max.passes*p
made.changes = TRUE
iterations = 0
j = 0
while(made.changes & (iterations < max.iterations)) {
iterations = iterations + 1
j = ifelse(j==p,1,j+1)
input.var = x[,j]
partial.residuals = y - (y.pred - f[[j]](input.var))
new.fj = centered.smoothing.function(input.var,partial.residuals)
new.y.pred = y.pred + (new.fj(input.var) - f[[j]](input.var))
number.changes = sum(abs(new.y.pred - y.pred) > tolerance)
made.changes = (number.changes > 0)
f[[j]] = new.fj
y.pred = new.y.pred

}
if (made.changes) {
warning("Exited addm.functions before backfitting converged")

}
return(make.addm(partial.responses=f,mean.response=alpha,x=x,

fitted=y.pred,y=y,
iterations=iterations,tolerance=tolerance,
max.iterations=max.iterations, converged=!made.changes))

}

centered.smoothing.function = function(x,y) {
g = loess(y ~ x, surface="direct",degree=1)
centering.constant = mean(predict(g))
return(function(u) { predict(g,newdata=u) - centering.constant })

}

Applied to the same data, we get the results in Figure 2.

7

-2 -1 0 1 2

-1
0

1
2

3
4

5

x1

f̂ 1

-2 -1 0 1 2

-3
-1

0
1

2
3

x2

f̂ 2

par(mfrow=c(2,1))
fit.addm = addm.functions(y,x,max.iterations=5)
plot(x[,1],fit.addm$partial.responses[[1]](x[,1]),

xlab=expression(x[1]),ylab=expression(hat(f)[1]))
curve(x^2-1,col="grey",add=TRUE,lwd=3)
curve(fit.addm$partial.responses[[1]](x),add=TRUE)
plot(x[,2],fit.addm$partial.responses[[2]](x[,2]),

xlab=expression(x[2]),ylab=expression(hat(f)[2]))
curve(3*tanh(x)-mean(3*tanh(rnorm(1e4))),col="grey",add=TRUE,lwd=3)
curve(fit.addm$partial.responses[[2]](x),add=TRUE)

Figure 2: Estimated (black) and true (grey) partial response functions. Notice
that the black curves are the actual estimated functions.

8

(c) Explain how you would modify your code to choose the degree of
smoothing by cross-validation. Remember that each function fj might
be more or less smooth than the others, so it needs its own bandwidth.
Answer: We need to define a grid of possible bandwidths for each
function. A reasonable choice would be to take say ((1:10)/10) times
the range, or inter-quartile range, of each input variable. One could
then evaluate the performance of the different bandwidths either in-
side or outside the back-fitting loop. (Either approach was acceptable
for an answer.)
If done inside the back-fitting loop, one would first calculate the
partial residuals for each j, and then do cross-validation among the
partial residuals to select a bandwidth for estimating fj . A cruder
but faster version would select the bandwidth for each function once,
in the first back-fitting iteration, and then hold it fixed. A more
refined but slower version would re-do the CV in each pass. Either
way, we get a bandwidth for each f̂j , but it’s the best bandwidth for
that function given our current estimates of the other functions.
Done outside the backfitting loop, we’d need divide the data into
training and testing sets, pick a bandwidth for each function, go
through back-fitting with those bandwidths, and then evaluate pre-
dictions on the testing set. Repeated over multiple combinations of
bandwidths and multiple divisions into training and testing sets, we’d
see which collection of bandwidths worked best. This would generally
be more accurate than picking the bandwidth inside the backfitting
loop, but also much slower, since the number of combinations of
bandwidths is very large!
Note that you did not have to write any code for this part.

9

(d) Why is it helpful to set α = E [Y] and require that E [f(Xj)] = 0?
Hint: What happens if you add 19740228 to f1 and subtract it from
f2?
Answer: For all x1 and x2, f(x1)+19740228+f(x2)−197402028 =
f(x1) + f(x2). Thus a model in which the partial response functions
are f1 and f2 makes the same predictions as one in which the partial
response functions are g1(x1) = f1(x1) + 19740228 and g2(x2) =
f2(x2) − 197402828. In fact we could add and subtract any set of
constants to the functions, and so long as their sum was zero it would
not alter the predictions. It would, however, prevent the estimated
partial response functions from converging. Requiring each function
to have expectation 0 keeps this from happening.

10

2. Download the California housing data set used on the exam.

(a) Linearly regress the log of the median house price on all the other
variables. Report your regression coefficients, your mean squared er-
ror, and the distribution of residuals. Is the latter Gaussian? Do
scatter-plots of residuals against predictors show any trends?
Answer: First, load the data into R:

> CAHousing = read.table("cadata.dat",header=TRUE)
> dim(CAHousing)
[1] 20640 9
> colnames(CAHousing)
[1] "MedianHouseValue" "MedianIncome" "MedianHouseAge" "TotalRooms"
[5] "TotalBedrooms" "Population" "Households" "Latitude"
[9] "Longitude"

Running dim() and colnames() isn’t necessary, but checks that
things worked OK.

fit1 = lm(log(MedianHouseValue) ~ MedianIncome + MedianHouseAge
+ TotalRooms + TotalBedrooms + Population + Households
+ Latitude + Longitude, data= CAHousing)

Now summary(fit1) or fit1$coefficients will give the coefficients.
They are:
feature coefficient
(Intercept) −11.8
MedianIncome 0.178
MedianHouseAge 0.00326
TotalRooms −0.0000319
TotalBedrooms 0.000480
Population −0.000173
Households 0.000249
Latitude −0.280
Longitude −0.276

To get the mean squared error, we square the residuals and average
them:

> mean(fit1$residuals^2)
[1] 0.1155802

We can look at the distribution of the residuals visually using com-
mands like hist and density — the latter does a kernel density
estimate, which is related to, but different than, the kernel regression
estimates we’ve seen2 Look at Figure 3.
The figure suggests that the distribution isn’t quite Gaussian. An-
other way to check this is to use a Q-Q plot against a Gaussian. This

2We’re getting there.

11

Histogram of rl

rl

D
en
si
ty

-2 -1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

rl = fit1$residuals
hist(rl,n=101,probability=TRUE)
lines(density(rl))
curve(dnorm(x,mean=mean(rl),sd=sd(rl)),col="blue",add=TRUE)

Figure 3: Histogram (bars) and smoothed density estimate (black curve) for the
linear-model residuals. The blue curve is a Gaussian distribution with the same
mean and standard deviation as the residuals. Notice that it has a lower peak,
but broader tails, than the empirical distribution.

12

should be approximately straight if the residuals are Gaussian; in-
stead it’s curved at both ends, a lot. The residuals are not Gaussian.
(Of course there are more formal tests of normality, which you can
use. However, R’s implementation of the common Shapiro-Wilks test
for normality, shapiro.test, doesn’t allow sample sizes bigger than
5000. A somewhat dubious dodge is to use shapiro.test(sample(rl,5000))
— that is, randomly pick 5000 of the residual values. Repeated 100
times,

max(replicate(100,shapiro.test(sample(rl,5000))$p.value))

the maximum p-value I get is 3.9 × 10−15, but, as I said, this is
dubious.)
To plot the residuals against the median income, use

plot(CAHousing$MedianIncome,rl,ylab="residuals",xlab="Median Income")

and so on for the other predictor variables. The results are in Figure
5 and 6. Looking them over, the only one which is really bad is the
plot of the residuals against median income, where there is a clear
downward trend as income grows, and the variance clearly narrows.
The variance of the residuals may seem to narrow as we go to high
values of say population, but there just aren’t many census units with
large populations.

13

qqnorm(rl)
qqline(rl)

Figure 4: Q-Q plot for the linear model residuals against a Gaussian distribution.
Notice the substantial curvature at both high and low quantiles.

14

Figure 5: Residuals of the linear model plotted against its predictor variables:
in reading order, median income, median house age, total rooms and total bed-
rooms.

15

Figure 6: Residuals of the linear model plotted against its predictor variables:
in reading order, population, number of households, latitude and longitude.

16

(b) Using a kernel smoother, regress the log of the median house price on
the median income. Use cross-validation to pick the bandwidth. What
is the mean squared error? Plot the estimated regression function; is
it linear? Plot the distribution of residuals; are they Gaussian? Plot
the residuals versus the median income; do you see any trends?
Answer: There are three approaches to doing this problem. One
is to go and find a kernel regression function. The CRAN package
np includes this, along with other tools for nonparametric regression.
Another is make the built-in function ksmooth do the work. The
third, of course, is to write our own kernel regression function.
Let’s use ksmooth. Looking at help(ksmooth), we see that we can
control the number and location of points at which the fit is evaluated
by using the options n.points and x.points. We can also control the
range over which it is prepared to estimate values using the range.x
option.

ksmooth(train.x,train.y,
kernel="normal",
range.x=range(c(train.x,test.x)),
n.points=length(test.x),
x.points = test.x)

will use the train.x,train.y pairs to make predictions at each of
the test.x values. So here’s how to do one CV run.

one.cv.run.ksmooth = function(x,y,p,h.grid) {
n = length(x)
n.sample = round(n*p)
train.rows = sample(1:n,n.sample) # Pick training data
train.x = x[train.rows]
train.y = y[train.rows]
test.x = x[-train.rows] # The rest is testing data
test.y = y[-train.rows]
ksmooth orders its output by increasing x --- to avoid confusion let’s
take care of that ourselves
test.y = test.y[order(test.x)] # Sorts y values in order of increasing x
test.x = sort(test.x) # Puts x itself in order
mse = vector(length=length(h.grid))
for (i in 1:length(h.grid)) {
y.pred = ksmooth(train.x,train.y,kernel="normal",bandwidth=h.grid[i],

range.x=range(x),n.points=length(test.x),x.points=test.x)$y
mse[i] = mean((test.y - y.pred)^2)

}
return(mse)

}

Now use replicate to repeat this several times.

17

k.fold.cv.ksmooth = function(x,y,p,h.grid,k) {
k.fold.results = replicate(k,one.cv.run.ksmooth(x,y,p,h.grid))
mean.over.k.fold = apply(k.fold.results,1,mean)
return(list(best.h = h.grid[which.min(mean.over.k.fold)],h.grid=h.grid,

mean.mse.over.k.fold = mean.over.k.fold))
}

Finally, run it:

CAHousing.CV = k.fold.cv.ksmooth(CAHousing$MedianIncome,
log(CAHousing$MedianHouseValue),
0.9,c(0.1,1,10),10)

This uses a grid of only 3 bandwidths, 0.1, 1.0 and 10, but does 10-
fold cross-validation, with a 90/10 train/test split in each fold. It
doesn’t take very long, but the result shows that 1 is a much better
bandwidth than either the larger or smaller values. Now I expand
the grid around 1:

CAHousing.CV = k.fold.cv.ksmooth(CAHousing$MedianIncome,
log(CAHousing$MedianHouseValue),
0.9,(1:16)/10,10)

This checks bandwidths from 0.1 to 1.6, in even steps of 0.1. Having
this many bandwidths takes rather longer to check, several minutes
on my laptop. I save the results in CAHousing.CV partly because
they take so long to produce, but mostly so that I can make a plot
of the out-of-sample error versus bandwidth (Figure 7). The best
bandwidth is h = 0.5, but it turns out that it really makes very, very
little difference what bandwidth we choose from this grid. Thus it’s
not worth refining it even more.

CAHousing.ks = ksmooth(CAHousing$MedianIncome,
log(CAHousing$MedianHouseValue),
kernel="normal",
bandwidth=CAHousing.CV$best.h,
x.points=CAHousing$MedianIncome)

CAHousing.ks now contains as its $x values the median income num-
bers, and its $y values the fitted log median prices. Figure 8 shows
the fit to the data, and Figure 9 the distribution of residuals.

18

0.5 1.0 1.5

0.
16
95

0.
17
00

0.
17
05

0.
17
10

0.
17
15

0.
17
20

Bandwidth

M
S
E

plot(CAHousing.CV$h.grid,CAHousing.CV$mean.mse.over.k.fold,xlab="Bandwidth",
ylab="MSE")

Figure 7: Estimates of out-of-sample error for different bandwidths in ksmooth
on the California housing data (10-fold CV with a 90/10 training/testing split).
Note the vertical scale.

19

plot(CAHousing$MedianIncome,log(CAHousing$MedianHouseValue),
xlab="Median Income",ylab="log Median House Value",cex=0.1,pch=19)

axis(1,at=CAHousing$MedianIncome,labels=FALSE,lwd=0.05)
axis(2,at=log(CAHousing$MedianHouseValue),labels=FALSE,lwd=0.05)
lines(CAHosuing.ks,lwd=4,col="red")

Figure 8: Kernel smoothing of log median house price on median income: data
shown as small black dots, kernel regression (with CV-selected bandwidth) as
thick red line. (The thickness is just for visual clarity and does not inlcude
any uncertainty estimates.) Tick-marks along the axes give an indication of
the marginal densities. The regression curve is not very linear over-all, but
it is pretty linear in the region where we have the most data, which is before
top-coding of the house prices kicks in.

20

Histogram of rks

rks

D
en
si
ty

-3 -2 -1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

-4 -2 0 2 4

-3
-2

-1
0

1

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

par(mfrow=c(1,2))
hist(rks,n=101,probability=TRUE)
curve(dnorm(x,mean(rks),sd(rks)),add=TRUE)
qqnorm(rks)
qqline(rks)

Figure 9: Left, histogram of the residuals from the kernel smoothing, plus the
density of a Gaussian with the same mean and variance. Right, Q-Q plot of the
residuals. This is pretty normal.

21

(c) Fit an additive model to the same data. Report the mean squared
error and plots of the estimated functions. Are they close to linear?
What is the distribution of total (i.e., not partial) residuals?

Answer: Because of the difficulties people had with previous parts, this
one has become Extra Credit.

First, using the home-made code:

am.fit = addm.functions(log(CAHousing[,1]),CAHousing[,2:9])

Here’s the plot of the results (Figure 10.

par(mfrow=c(3,3))
for (j in 2:9) {
curve(am.fit$partial.responses[[(j-1)]](x),

from=min(CAHousing[,j]),to=max(CAHousing[,j]),
xlab=colnames(CAHousing)[j],
ylab=expression(hat(f)))

axis(1,at=CAHousing[,j],lwd=0.1,labels=FALSE,col="grey")
}
plot(am.fit$y,am.fit$fitted,xlab="actual",ylab="predicted")
abline(0,1,lwd=4,col="blue")

This tells R to use a 3× 3 grid for plotting, then plots each of the partial
response functions (adding tick-marks for the training data), and finally
plots the actual values of the response against the fitted values of the
response; ideally these would cluster around the overlaid diagonal line.

Figure 11 shows the same thing, only using addm.points to fit the model.
Notice the general similarity in shape to the partial response in Fig-
ure 10, but much greater roughness in some of them (e.g., Households,
TotalBedrooms), and the larger range for f̂ . This is much less smooth,
and the fit to the data is tighter. (The MSEs are 0.0390 for addm.points
and 0.118 for addm.functions.) A production version of the code should
really include some way of picking the amount of smoothing (i.e., the
bandwidth).

In neither case, however, are the partial response functions especially lin-
ear.

The residuals look pretty good.

22

0 5 10 15

-0
.5

0.
5

MedianIncome

f̂

0 10 20 30 40 50

-0
.2

0.
0

0.
2

MedianHouseAge

f̂

0 10000 30000

-0
.0
5

0.
05

TotalRooms

f̂

0 2000 4000 6000

-0
.0
5

0.
00

0.
05

0.
10

TotalBedrooms

f̂

0 10000 25000

-0
.2
0

-0
.1
0

0.
00

0.
10

Population

f̂

0 2000 4000 6000

-0
.0
5

0.
05

0.
15

Households

f̂

34 36 38 40 42

-0
.4

-0
.2

0.
0

Latitude

f̂

-124 -120 -116

-0
.4

0.
0
0.
2

Longitude

f̂

9.5 10.5 11.5 12.5

11
.0

12
.0

13
.0

actual

pr
ed
ic
te
d

Figure 10: Estimated partial response functions, and predicted vs. actual re-
sponse values, using the addm.functions additive-model fitter.

23

Figure 11: Estimated partial response functions, and predicted vs. actual re-
sponse values, using the addm.points additive-model fitter.

24

Histogram of ram

ram

D
en
si
ty

-2 -1 0 1 2

0.
0

0.
4

0.
8

1.
2

-3 -2 -1 0 1 2 3

-2
-1

0
1

2

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

par(mfrow=c(2,1))
hist(ram,n=101,probability=TRUE)
curve(dnorm(x,mean(ram),sd(ram)),add=TRUE)
qqnorm(ram)
qqline(ram)

Figure 12: Distribution of residuals from the additive model of Figure 10, show-
ing the histogram, a Gaussian with the same man and standard deviation, and
a Q-Q plot.

25

