
Homework Assignment 6

36-350, Data Mining

SOLUTIONS

1. Minimum-Error Classification

(a) For each fixed x, show that the probability of mis-classification, R, is
q + p− 2pq.
Answer: Mis-classifying means either Y = 1 but we predict 0, or
Y = 0 but we predict 1. Since Y and our predictions are independent
(given X), the first error has probability p(1 − q), and the second
(1− p)q. So R = p(1− q) + (1− p)q = p + q − 2pq.

(b) Plot this error rate as a function of q, in the interval [0, 1] for p = 0.1,
p = 0.3, p = 0.5, p = 0.6 and p = 0.9. Where are the minima?
Answer: I re-wrote R = p + (1 − 2p)q, and used abline (see next
page):

plot(c(0,1),c(0,1),xlab="q",ylab="R",type="n")
abline(0.1,1-2*0.1); abline(0.3,1-2*0.3,lty=2)
abline(0.5,1-2*0.5,lty=3); abline(0.6,1-2*0.6,lty=4)
abline(0.9,1-2*0.9,lty=5)

The minima are at q = 0 for p = 0.1 and p = 0.3, at q = 1 for p = 0.6
and p = 0.9, and everywhere or nowhere for p = 0.5 (because that’s
a flat line).

(c) Show that the derivative of R with respect to q is never zero, unless
p = 1/2.
Answer:

∂R

∂q
=

∂p

∂q
+

∂q

∂q
− ∂(2pq)

∂q
= 1− 2p

This is constant, independent of q; it is < 0 if p > 1/2, > 0 if p < 1/2,
and it is = 0 if and only if p = 1/2.

(d) Show that R is minimized when q = 1 if p > 0.5, and when q = 0 if
p < 0.5.
Answer: If p 6= 0.5, then ∂R/∂q 6= 0 everywhere, and it always has
the same sign. When a function’s derivative always has the same sign
in some region, its minimum must be at one boundary of the region.
(So must its maximum.) If p > 0.5, the derivative is always negative,
meaning that R can always be made smaller by increasing q, until

1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q

R

we reach the minimum at q = 1. Likewise, if p < 0.5, ∂R/∂q > 0,
so we minimize R by reducing q to its smallest possible value, q = 0.
When p = 1/2, it does matter what we predict.

2. Three Classifiers

The easiest way to load the data is

foobar = read.table("foobar",header=TRUE)

(a) Plot the data. Use different colors (via the col argument) or point-
shapes (via the pch argument) for the two classes. If you use different
colors, make sure they look distinct when you print them out!
Answer:

plot(foobar[,"x1"],foobar[,"x2"],
col=ifelse(foobar[,"y"]=="foo","red","blue"),

2

pch=ifelse(foobar[,"y"]=="foo",21,23),
xlab="x1",ylab="x2")

This plots points with the label foo as red circles, and others as blue
diamonds.

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x1

x2

X1 and X2 were independently and uniformly distributed on [−1, 1].
Y was foo if one coordinate was negative and the other positive,
otherwise, if both X1 and X2 had the same sign, Y was bar.

(b) Divide the data set at random into two equal haves, one for training
and one for testing. Include your code. Include a check that the two
halves have the right size, and that they do not overlap.
Answer: Here’s one way. It uses two R conveniences: selecting
multiple rows (or columns) by giving a vector of indices, and removing
rows or columns by giving negated indices.

dim(foobar)
training.rows = sample(1:nrow(foobar),nrow(foobar)/2,replace=FALSE)
training.data = foobar[training.rows,]
testing.data = foobar[-training.rows,]
dim(training.data)

3

dim(testing.data)
intersect(rownames(training.data),rownames(testing.data))

foobar is a 300 × 3 array, so both the training and the testing sets
should be 150×3 arrays each, and they are. The command intersect
returns the (unique) common elements of two vectors — just like set
intersections; run here it returns character(0), meaning the empty
set. (You should check that training.data and testing.data both
inherit their row names from foobar. When I run this, for example,
rownames(training.data) begins "281" "238" "40" , and so on
for 147 more entries.)

(c) Fit a prototype classifier to the training data and evaluate it on the
test data. Report the error rate.
Answer: You wrote a prototype classifier for HW #2. This modifies
the prototype function in the solutions to that problem set so that it
can calculate the prototypes once, and then classify multiple vectors.1

It calls the nearest.points function from the first problem set. It
also strips out the pre-processing for bags of words.

prototype.classifier <- function(newdata,examples.inputs,examples.labels) {
class.prototypes = aggregate(examples.inputs,

list(class.labels=examples.labels),
mean)

label.set = class.prototypes$class.labels
matches = nearest.points(newdata,class.prototypes[,-1])$which
label.predictions = label.set[matches]
return(label.predictions)

}

And here’s how to count the errors:

prototype.predictions = prototype.classifier(newdata=testing.data[,-1],
examples.inputs = training.data[,-1],
examples.labels = training.data[,"y"])

sum(prototype.predictions != testing.data[,"y"])/nrow(testing.data)

I get an error rate of 49%; your error rate will depend on the random
training/testing split, but should be around 50%, which is what you’d
get by tossing a coin.
Comment: The prototype method always draws linear boundaries
between classes. With only two classes, this means it assumes they
can be separated by a single straight line. This problem is a simple
example of classification problems which cannot be solved by any
linear classifier.

1You could use the unmodified version, but that’s much slower. An even better approach
would be to define a new type of object for prototype classifiers, and then write separate
fitting and predict functions.

4

(d) Do the same with a nearest-neighbor classifier.
Answer: Again, writing a nearest-neighbor classifier was part of
HW # 2. Here I modify the solution code to classify multiple vectors
at once. Again, it calls nearest.points from the first problem set.

my.nn.multiple = function(newdata, examples.inputs, examples.labels) {
matches = nearest.points(newdata,examples.inputs)$which
label.predictions = examples.labels[matches]
return(label.predictions)

}

Evaluating the error in the same way as for the prototype classifier,
I get a rate of 5%.

(e) Do the same with a classification tree. Include a picture of the tree,
annotated with the actual splits.
Answer: The tree can be fit with

library(tree)
my.tree = tree(y ~ x1 + x2, data=training.data)

The commands

plot(my.tree)
text(my.tree)

draw and label the tree.
A fancier version is

tree.screens()
plot(my.tree)
text(my.tree)
tile.tree(my.tree,trainig.data[,"y"])

This plots the tree as above, but then adds a bar-chart underneath
each leaf showing the distribution of the classes for that leaf.

5

|x1 < -0.401109

x2 < -0.055311 x2 < -0.0148916

x1 < 0.0624099 x1 < 0.0032814

x2 < 0.263444

bar foo

bar foo

foo foo

bar

One can also plot the actual partition:

partition.tree(my.tree)
points(training.data[,"x1"],training.data[,"x2"],

pch=ifelse(training.data[,"y"]=="foo",21,23),
col=ifelse(training.data[,"y"]=="foo","red","blue"))

The first command draws the boundaries and labels them; the second
adds the training data (where again foo==red==circles).

6

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x1

x2

bar

foo

bar foo

foo

foo

bar

We get predicted class labels for the testing data as

tree.predictions = predict(my.tree,newdata=testing.data,type="class")
sum(tree.predictions != testing.data[,"y"])/nrow(testing.data)

This gives me an error rate of 2.6%. (Notice that the boundaries in
the plot aren’t quite on the axes.)

7

