Homework Assignment 7

36-350, Data Mining

Solutions

1. Base rates (10 points)

(a) What fraction of the e-mails are actually spam?
ANSWER: 39%.
> sum(spam$spam=="spam")
[1] 1813

> 1813/nrow(spam)
[1] 0.3940448

(b) What should the constant classifier predict?
ANSWER: email, since most letters are not spam.

(¢c) What is the error rate of the constant classifier?
ANSWER: 39% :

> sum(spam$spam!="email") /nrow(spam)
[1] 0.3940448

2. Training and testing (10 points) Divide the data set at random into a
training set of 2301 rows and a testing set of 2300 rows. Check that the
two halves do not overlap, and that they have the right number of rows.
What fraction of each half is spam? (Do not hand in a list of 2301 row
numbers.) Include your code for all of this.

ANSWER: This is like the training/testing divide from the last homework.

> training.rows = sample(l:nrow(spam),2301,replace=FALSE)
> training.data = spam[training.rows,]

> testing.data = spam[-training.rows,]

dim(training.data)

[1] 2301 58

> dim(testing.data)

[1] 2300 58

> intersect(rownames(training.data) ,rownames(testing.data))
character(0)

> sum(training.data$spam=="spam") /2301

[1] 0.4059105

\"

> sum(testing.data$spam=="spam") /2300
[1] 0.3821739

In other words, the training data is 41% spam, and the testing data is
38%. This is not statistically significant.

3. Fitting (40 points)

(a) Fit a prototype linear classifier to the training data, and report its
error rate on the testing data.

ANSWER: I'll re-use the code from last time. (See those solutions.)

> prototype.predictions = prototype.classifier(newdata=testing.datal,-58],
examples.inputs = training.datal[,-58],
examples.labels = training.data$spam)

> sum(prototype.predictions != testing.data$spam)/nrow(testing.data)

[1] 0.3160870

The error rate on the testing data is 32%.

(b) Fit a classification tree to the training data. Prune the tree by cross-
validation (see below). Include a plot of the C'V error versus tree size,
a plot of the best tree, and its error rate on the testing data. Which
variables appear in the tree?

> spam.tr = tree(spam ~., data=training.data)

> summary (spam.tr)

Classification tree:

tree(formula = spam ~ ., data = training.data)

Variables actually used in tree construction:

[1] "A.53" "A.7" "A.52" "A.25" "A.B" "A.56" "A.55" "A.16" "A.27"
Number of terminal nodes: 12

Residual mean deviance: 0.4665 = 1068 / 2289

Misclassification error rate: 0.0804 = 185 / 2301

(Notice that summary tells us which variables appear in the tree.)
Using . on the right-hand side of the formula means “include every
variable from the data frame other than the response”.

Using cross-validation to prune, and plotting error versus size:

spam.tr.cv = cv.tree(spam.tr,method="misclass")
plot(spam.tr.cv)

The best tree is, in this case, the largest tree found. In part this
is because the default tree-fitting algorithm includes some sensible
stopping rules.

plot(spam.tr)

The error rate on the testing data:

460.0 40.0 22.0 70 6.7 0.0 -Inf
| | | | | | | | |

700 800 900
| | |

600
|

misclass

500
|

400
|

300
|

200
|

size

Figure 1: Mis-classification rate versus tree size for prunings of the default tree.
(The upper horizontal axis shows the values of the error/size trade-off parameter
which give us a tree with a given number of nodes.)

A.53 <,0.0555
T

A.7 <|0.055 A.2540.435

A.52 <|0.0775

email
spam spam

A.52 40.191 A.27 £0.14

1
spam email

A.25 £ 0.03 A.55 <[3.4085

~] A.@@TI

10.5 email spam
email Spam

email .
email spam

Figure 2: The default tree.

> spam.tr.predctions = predict(spam.tr,newdata=testing.data,type="class")
> sum(spam.tr.predictions != testing.data$spam)/nrow(testing.data)
[1] 0.1034783

(This could be done in one line, but it looks uglier.) This rate is 10%;
the difference between this and the 8% rate on the training data is
statistically significant, but not substantively huge.

Things look a bit different if we start by fitting a very big tree.

> spam.tr.big = tree(spam ~., data=training.data,minsize=1,mindev=0)

> summary (spam.tr.big)

Classification tree:

tree(formula = spam ~ ., data = training.data, minsize = 1, mindev = 0)

Variables actually used in tree construction:
[1] "A.B3" "A.7" "A.B2" "A 25" "A B" MA 27" "A 45" "A.56" "A.55" "A.11"
IlA.2OIl IIA.slI

[13] "A.19" "A.57" "A.46" "A.16" "A.12" "A.49" "A.21" "A. 22" "A.29" "A.14"
"A.28" "A.8"

[25] "A.9" "A.15" "A.24"™ "A. 1" "A.44" "A. 10" "A.13" "A.33" "A.39" "A.2"
"A.18" "A.37"

Number of terminal nodes: 125

Residual mean deviance: 0.001274 = 2.773 / 2176

Misclassification error rate: 0.0004346 = 1 / 2301

minsize is the minimum number of observations to allow in a node,
and mindev is the minimum improvement in the error needed to
create a node. This tells the tree-growing algorithm to ignore such
limits. Plotting the tree gives us a pretty picture, but trying to label
all the nodes seems foolish.

To get the best size, we look for the point where the error rate bot-
toms out. Unfortunately, cv.tree lists sizes in decreasing order, and
which.min returns the first match. Use rev to reverse vectors.

> rev(spam.tr.big.cv$size) [which.min(rev(spam.tr.big.cv$dev))]
[1] 19

(Why do we need to use rev twice?)

spam.tr.pruned = prune.tree(spam.tr.big,best=19)
> summary (spam.tr.pruned)

Classification tree:

snip.tree(tree = spam.tr.big, nodes = c(27, 129, 14, 10, 37,

135, 66, 17, 49, 19, 26, 48, 25, 36, 128, 134))

Variables actually used in tree construction:
[1] "A.53"™ "A.7" "A.B2" "A 25" "A.B" "A 27" "A.45" "A.56" "A.46" "A.55"
"A.16"

Number of terminal nodes: 19

Residual mean deviance: 0.3911 = 892.6 / 2282

ﬂﬁ}

R o

Figure 3: Maximal tree obtained from the spam data.

Misclassification error rate: 0.06389 = 147 / 2301

Much smaller than the full tree, this can actually be plotted and
labeled.

The error rate on the testing data (9.1%) is a bit better than that of
the slightly smaller tree we got at first, but not hugely:

> spam.pruned.preds = predict(spam.tr.pruned,newdata=testing.data,type="class")
> sum(spam.pruned.preds != testing.data$spam)/2300
[1] 0.09130435

Whether the extra 1% of error is worth having somewhat fewer leaves
is up to you.

Use bagging to fit an ensemble of 100 trees to the training data. Re-
port the error rate of the ensemble on the testing data. Include a plot
of the importance of the variables, according to the ensemble.
ANSWER:

> spam.bag = bagging(spam ~ ., data = training.data, minsplit=1, cp = 0)
> summary (spam.bag)
Length Class Mode

formula 3 formula call
trees 100 -none- 1list
votes 4602 -none- numeric
class 2301 -none- character
samples 230100 -none- numeric
importance 57 -none- numeric

With bagging, we’ll not worry about individual trees being too over-
fit; rather we’ll let the averaging take care of that for us. (In fact,
here if T use the default control settings bagging sometimes returns
the same tree on every bootstrap sample!) The summary method,
evidently, is not too informative. In part however this is because
there are 100 separate trees to keep track of!

The in-sample and out-of-sample error rates are 5.9% and 7.6%:

> sum(spam.bag$class != training.data$spam)/nrow(training.data)
[1] 0.05910474

> predict(spam.bag,newdata=testing.data)$error

[1] 0.07565217

Use boosting to fit an ensemble of 100 trees to the training data.
Report the error rate of the ensemble on the testing data. Include a
plot of the importance of the variables.

ANSWER:

> spam.boost = adaboost.Mil(spam ~ ., data = training.data, boos=FALSE,
minsplit=1, cp =0, maxdepth=5)
> summary (spam.boost)

A53 <IO.0555
1

A7 <[0.055 A.2540.435
. AT <k,075
A46[< 0.2
A55 < email spam

spam spam email
email spam

A5240.191 A27 §0.14

spam email

A.250.03 A.55 <[3.4085

| A.16 §0.04
email
spam

email spam

A4

0.045

email ;
email email email
spam email

plot(spam.tr.pruned)
text (spam.tr.pruned,cex=0.5)

Figure 4: Tree obtained by starting from the maximal tree and using cross-
validation to prune.

o
o _|
=
o
© -
o)
o
© o
@ o
2 © 4
©
© o
o
o
E
o
v —
o)
o
o o)
o
N o
o
o o o O o
o %o o ©
o o O o
o o o o o
o 00 (o)
o - o) o 000"~ 0% 0 00 0 0°° 0o o
T T T T T T
0 10 20 30 40 50
Feature

plot(1:57,spam.bag$importance,xlab="Feature", ylab="Importance")

Figure 5: Importance of the variables according to bagging

Length Class Mode

formula 3 formula call
trees 100 -none- 1list
weights 100 -none- numeric
votes 4602 -none- numeric
class 2301 -none- character
importance 57 -none- numeric

The error rate on the training data is 9%, and on the testing data
it’s 11%:

> sum(spam.boost$class != training.data$spam)/nrow(training.data)
[1] 0.09126467

> predict(spam.boost,newdata=testing.data)$error

[1] 0.1108696

The importance plot:
For reference, here are the two importance plots comapred:

(e) Which (if any) of these methods out-performs the constant classifier?
ANSWER: They all do.

4. Errors (20 points) Pick the prediction method from the previous problem
with the lowest error rate.

This was the bagged trees, at 7.6% mis-classification.

(a) What is its rate of false negatives? That is, what fraction of the spam
e-mails in the training set did it not classify as spam?

ANSWER:

> testing.spam.rows = (testing.data$spam == "spam")
> predict(spam.bag, newdata=testing.data[testing.spam.rows,])$error
[1] 0.1467577

That is, first we check which rows of the testing data have the true
class of spam. (Note that testing.spam.rows is a Boolean vector,
of length 2300.) Then we then predict only on those data points; all
the errors then are false negatives. This gives an error rate of 14.7%.

(b) What is its rate of false positives? That is, what fraction of the
genuine e-mails in the testing set did it classify as spam?
ANSWER: We can re-use the same trick:

> predict(spam.bag, newdata=testing.data[!testing.spam.rows,])$error
[1] 0.03166784

Notice that we need to logically negate testing.spam.rows — we
want the rows which aren’t spam. This gives an error rate of 3.2%.
Quick sanity check: the two error rates together should add up to the
over-all error rate. And, indeed, 0.147%0.384-0.032%(1—0.38) = 0.076,
as it should.

10

0
& o o
o |
I
v
° -
o
C
]
£ o o o o
o
Q
E
£ o]
=
n -
© - 00 000 00000000 OO0OOOO0000000000000000000000000000 O 00

I I I I I I
0 10 20 30 40 50

Feature

plot(1:57,spam.boost$importance,xlab="Feature", ylab="Importance")

Figure 6: Importance of variables according to boosting.

11

[Te]
o) o
o
N
0 _J
o -
(]
c
©
ht o) o o O
o
Q.
E]
= o]
=
.
. .
. . .
.
Lr) —
.
.
.
. .
. ‘ °
.
o ° o%e° ° ..0 ° .’ °
O — OO0 @00 0O00O00O00® 600000000009@.@&0.Q.0.0Q.O.&OOQOQOQ ® OO
I I I I I I
0 10 20 30 40 50

Feature

> plot(1:57,spam.boost$importance,xlab="Feature", ylab="Importance")
> points(1:57,spam.bag$importance, pch=20)

Figure 7: Variable importance from boosting (open circles) compared to bagging
(filled circles). Boosting gives more importance to a smaller number of variables.

12

In this case, the predict method for bagging not only returns the
error rate, it will actually return the confusion matrix, the conti-
gency table of actual versus observed classes:

> predict(spam.bag, newdata=testing.data)$confusion
Observed Class
Predicted Class email spam
email 1376 129
spam 45 750

From this we can calculate that the false positive rate is 45/(45 +
1376) = 3.2%, and the false negative rate is 129/(129+750) = 14.7%,
as we saw above.

What fraction of e-mails it classified as spam were actually spam?

ANSWER: From the confusion matrix, 750/(750 + 45) = 94%. With-
out the confusion matrix, we use Bayes’s rule. (To save space, below
+1 stands for the class spam, and —1 for the class email.)

Pr (Y =41y = +1) =

Pr (Y = 41|y = +1) Pr(Y = +1)

Pr (Y — 1|y = +1) Pr(Y = +1)+Pr (Y — 1|y = —1) Pr(Y = —1)

7 (1 —0.147)(0.38) 004
~ (1-0.147)(0.38) + (0.032)(1 — 0.38)

The confusion matrix is easier.

13

