
Homework Assignment # 8

36-350, Data Mining

SOLUTIONS

1. The Prototype Method Really Is a Linear Classifier

(a) Show that the prototype method is really a linear classifier of the form
sgn b + ~x · ~w, and find b and ~w in terms of ~c+ and ~c−.
Answer: “~x is closer to ~c+ than to ~c−” means that

‖~x− ~c+‖ ≤ ‖~x− ~c−‖ (1)

Square both sides so that things will be easier to calculate:

‖~x− ~c+‖2 ≤ ‖~x− ~c−‖2 (2)
‖~x‖2 − 2~x · ~c+ + ‖~c+‖2 ≤ ‖~x‖2 − 2~x · ~c− + ‖~c−‖2 (3)

(4)

Cancel the ‖~x‖2 since it appears on both sides of the inequality, and
bring everything else to one side.

0 ≤ 2~x · ~c+ − 2~x · ~c− + ‖~c−‖2 − ‖~c+‖2 (5)
0 ≤ (‖~c−‖2 − ‖~c+‖2) + ~x · (2~c+ − 2~c−) (6)

So b = ‖~c−‖2 − ‖~c+‖2 and ~w = 2(~c+ − ~c−).

(b) Find the dual weights. How many support vectors are there?
Answer: In the dual form, we re-write ~w as

∑n
i=1 αiyi~xi. So

n∑
i=1

αiyi~xi = 2(~c+ − ~c−) (7)

= 2

 1
n+

∑
i: yi=+1

~xi −
1

n−

∑
i: yi=−1

~xi

 (8)

=
∑

i: yi=+1

2yi

n+
~xi +

∑
i: yi=−1

2yi

n−
~xi (9)

So αi = 2/n+ if yi = +1 and = 2/n− if yi = −1. Since none of these
weights are zero, every vector is a support vector.

1

(c) Theorem 4 in the handout on support vector machines gives a formula
for the generalization error of a linear classifer. What does it pre-
dict for the error rate of a prototype-method classifier which perfectly
separates the training data?
Answer: The theorem says that when there are m support vectors
and n data points, with probability at least 1− δ the error is at most

1
n−m

(
m log

en

m
+ log

n

δ

)
Here the number of support vectors, m, is in fact n. So n −m = 0
and 1/(n − m) = ∞. Thus the theorem says that the error rate
is probably less than ∞, which, while true, is not very helpful. The
theorem only becomes non-trivial when some training vectors are not
support vectors, so that n > m.

2

2. Spam, spam, spam, spam

(a) Fit a logistic regression to the training set using glm. What is the
error rate on the testing set?
Answer:

> spam.logr = glm(spam ~ ., data=training.data,family=binomial)
> logodds.predictions = predict(spam.logr,newdata=testing.data)
> logr.class.predictions = ifelse(logodds.predictions>0, "spam", "email")
> mean(logr.class.predictions != testing.data[,"spam"])
[1] 0.07391304

The error rate is 7.4%.

(b) Use nnet to fit neural networks with from 1 to 10 nodes in the hidden
layer. For each size, fit the network on the training data; estimate
and report the generalization performance using cross-validation on
the training data; and report the performance on the testing data.
Answer: We’ll do ten-fold cross-validation, with 10% of the training
data held out each time.

CV.fold = 10
n.hidden = (1:10) # Number of hidden nodes
out.of.sample.errors = matrix(rep(0,10*CV.fold),nrow=CV.fold) # This will store

the error rates, one row per CV run, one column per number of nodes.
n.train = nrow(training.data)
for (i in 1:CV.fold) {
CV.train.rows = sample(1:n.train,size=floor(0.9*n.train),replace=FALSE)
CV.train = training.data[CV.train.rows,]
CV.test = training.data[-CV.train.rows,]
for (j in n.hidden) {
fit = nnet(spam ~ ., data=CV.train, size=j, decay=0.01,maxit=200)
predictions = predict(fit,newdata=CV.test,type="class")
out.of.sample.errors[i,j] = sum(predictions != CV.test[,"spam"])

}
}
CV.error.rates = colMeans(out.of.sample.errors)
best.size = which.min(CV.error.rates)

This takes a while to run — every time it calls nnet it has to do a
fairly complicated optimization, and it calls it 10 × 10 = 100 times.
It returns (when I run it) a best size of 6.

> best.nn = nnet(spam ~ ., data=training.data,size=best.size)
> nn.predictions = predict(best.nn,newdata=testing.data,type="class")
> mean(nn.predictions != testing.data[,"spam"])
[1] 0.07478261

So the error rate is 7.5% on the testing data.

3

(However, one can see from the figure that the differences between
differently-sized neural nets are not very large, especially compared
to the variation in performance from one CV run to the next.)

(c) Fit a support vector machine with a radial (Gaussian) kernel. Pick
the tuning parameter λ by cross-validation on the training set.
Answer: As the hint says, the easiest way to do this is to use
the tune function provided in the e1071 library. The example in
help(tune) doesn’t do cross-validation, but rather a single split into
training/validation sets, but that’s easily fixed. Note that the radial
kernel is the default in the svm function — we don’t have to specify
it. It calls the λ setting cost.

> CV.svms = tune(svm, spam~., data=training.data,
ranges=list(cost=2^(-2:2)),
tunecontrol=tune.control(sampling="cross",cross=10))

> summary(CV.svms)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:
cost

1

- best performance: 0.06998372

- Detailed performance results:
cost error dispersion

1 0.25 0.08171730 0.01526690
2 0.50 0.07519741 0.01747323
3 1.00 0.06998372 0.01420112
4 2.00 0.07129373 0.01420417
5 4.00 0.07086463 0.01550346

> svm.fit = svm(spam ~., data=training.data, cost=1)
> svm.predictions = predict(svm.fit, newdata=testing.data)
> mean(svm.predictions != testing.data[,"spam"])
[1] 0.07782609

So, the best value of the tuning parameter is 1, with an out-of-sample
error rate of 7.8%. As the plot shows, once again the results are
reasonably insensitive to the tuning parameter over a fairly wide
range.

(d) Write commands to find the rows numbers of the test points mis-
classified by each of the three classifiers, i.e., the logistic regression,

4

2 4 6 8 10

0
5

10
15

20
25

number of hidden nodes

N
um

be
r o

f m
is

-c
la

ss
ifi

ca
tio

ns

CV.error.rates.sds = apply(out.of.sample.errors,2,sd)
plot(CV.error.rates,ylim=c(0,25),xlab="number of hidden nodes",

ylab="Number of mis-classifications")
segments(1:10,CV.error.rates-CV.error.rates.sds,

1:10,CV.error.rates+CV.error.rates.sds)

Figure 1: Average number of cross-validation points mis-classified by neural
networks with varying numbers of hidden nodes. Circles show the mean over
the 10 CV runs, the whiskers extend for one standard deviation. The minimum
is at 6 nodes.

5

1 2 3 4

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

λ

C
ro

ss
-v

al
id

at
ed

 e
rr

or
 ra

te

costs = CV.sms$performances[,1]
CV.means = CV.sms$performances[,2]
CV.sds = CV.sms$performances[,3]
plot(costs,CV.means,xlab=expression(lambda),ylim=c(0,0.1),

ylab="Cross-validated error rate")
segments(costs],CV.means-CV.sds,costs,CV.means+CV.sds)

Figure 2: Error rates of SVMs fit with different tuning parameters λ, as deter-
mined by ten-fold cross-validation within the training data. Circles show the
mean, whiskers one standard deviation in either direction. The minimum is at
λ = 1 (among the values tried), but it’s a pretty shallow minimum.

6

the best neural network and the best support vector machine. (That
is, you should get three vectors of row numbers.)
Answer: The easiest way to do this uses the R functions which
and rownames — because of the way we selected the testing data as
a subset of the full data, the original row-numbers are retained as
names of the selected rows.

> testing.rows = rownames(testing.data)
> testing.spam = testing.data[,"spam"]
> logr.misses = testing.rows[which(logr.class.predictions != testing.spam)]
> nn.misses = testing.rows[which(nn.predictions != testing.spam)]
> svm.misses = testing.rows[which(svm.predictions != testing.spam)]

(e) For each pair of the three classifiers, how many points do they both
mis-classify? (Hint: use intersect.) How many would you expect
both predictors to mis-classify if their errors were independent?
Answer: If the classifiers made independent errors, then the prob-
ability of them both being wrong would be the product of their indi-
vidual error rates.

> n.test = nrow(testing.data)
> length(intersect(logr.misses, nn.misses))
[1] 99
> n.test*(length(logr.misses)/n.test)*(length(nn.misses)/n.test)
[1] 12.71304
> length(intersect(logr.misses, svm.misses))
[1] 125
> n.test*(length(logr.misses)/n.test)*(length(nn.misses)/n.test)
[1] 12.71304
> length(intersect(nn.misses, svm.misses))
[1] 94
> n.test*(length(svm.misses)/n.test)*(length(nn.misses)/n.test)
[1] 13.38609

In words, if the errors were independent we’d expect about 13 co-
incidences in the testing data. Instead, we get 100–120. These are
definitely not independent. If one classifier is making a mistake, the
others are much more likely to make a mistake than chance would
suggest.

(f) Use the test set to estimate the error of the combined predictor whose
output is the majority vote of the logistic regression, the neural net-
work and the support vector machine. (That is, the combined predic-
tor outpts spam if two or more of the three say spam, and it outputs
email if two or more of the three say email.)
Answer: For the combined predictor to guess wrong, two out of
three of the constituent predictors must guess wrong. Thus we can
find the set of rows on which the combined predictor makes errors:

7

> combined.misses = union(intersect(logr.misses, nn.misses),
union(intersect(logr.misses, svm.misses),

intersect(nn.misses, svm.misses)))
> length(combined.misses)
[1] 156
> length(combined.misses)/n.test
[1] 0.06782609

The combined predictor works better than any of the individual clas-
sifiers — a 6.8% error rate is better than a 7.7% error rate — but
not by a lot. The problem is that they make too many of the same
mistakes (see previous part), so it’s hard for them to correct each
other.

8

