
Handout 2

More Similarity Searching; Multidimensional

Scaling

36-350: Data Mining

August 27, 2008

Reading: Principles of Data Mining, sections 14.1–14.4 (skiping 14.3.3 for
now) and 3.7.

Let’s recap similarity searching for documents. We represent each document
as a “bag of words”, i.e., a vector giving the number of times each word occurred
in the document. This abstracts away all the grammatical structure, context,
etc., leaving us with a matrix whose rows are feature vectors, a “data frame”.
To find documents which are similar to a given document Q, we calculate the
distance between Q and all the other documents, i.e., the distance between their
feature vectors. We then return the k closest documents.

Today we’re going to look at some wrinkles and extensions.

Stemming It is a lot easier to decide what counts as “a word” in English than
in some other languages.1 Even so, we need to decide whether “car” and “cars”
are the same word, for our purposes, or not. Stemming takes derived forms
of words (like “cars”, “flying”) and reduces them to their stem (“car”, “fly”).
Doing this well requires linguistic knowledge (so the system doesn’t think the
stem of “potatoes” is “potatoe”, or that “gravity” is the same as “grave”), and
it can even be harmful (if the document has “Saturns”, plural, it’s most likely
about the cars).

Multidimensional Scaling The bag-of-words vectors representing our docu-
ments generally live in spaces with lots of dimensions, certainly more than three,

1For example, Turkish is what is known as an “aggulutinative” language, in which gram-
matical units are “glued together” to form compound words whose meaning would be a whole
phrase or sentence in English, e.g., gelemiyebelirim, “I may be unable to come”, yapabilecekdiy-
seniz, “if you were going to be able to do”, or calistirilmamaliymis, “supposedly he ought not
to be made to work”. (German does this too, but not so much.) This causes problems with
Turkish-language applications, because many sequences-of-letters-separated-by-punctuation
are effectively unique. See, for example, L. Özgür, T. Güngör and F. Gürgen, “Adaptive anti-
spam filtering for agglutinative languages: a special case for Turkish”, Pattern Recognition
Letters 25 (2004): 1819–1831, available from http://www.cmpe.boun.edu.tr/∼gungort/.

1

http://www.cmpe.boun.edu.tr/~gungort/

which are hard for ordinary humans to visualize. However, we can compute the
distance between any two vectors, so we know how far apart they are. Multidi-
mensional scaling (MDS) is the general name for a family of algorithms which
take high-dimensional vectors and map them down to two- or three-dimensional
vectors, trying to preserve all the relevant distances.

Abstractly, the idea is that we start with vectors v1, v2, . . . vn in a p-dimensional
space, where p is large, and we want to find new vectors x1, x2, . . . xn in R2 or
R3 such that

n∑
i=1

∑
j 6=i

(δ(v1, v2)− d(x1, x2))
2

is as small as possible, where δ is distance in the original space and d is Eu-
clidean distance in the new space. Note that the new or image points xi are
representations of the vi, i.e., representations of representations.

There is some trickiness to properly minimizing this objective function —
for instance, if we rotate all the xi through a common angle, their distances are
unchanged, but it’s not really a new solution — and it’s not usually possible to
make it exactly zero (See Sec. 3.7 in the textbook for details.) We will see a lot
of multidimensional scaling plots, because they are nice visualization tools, but
we will also see a lot of other data reduction or dimensionality reduction
methods, because sometimes it’s more important to preserve other properties
than distances.

Classification One very important data-mining task is classifying new pieces
of data, that is, assigning them to one of a fixed number of classes. Last time,
our two classes were “about automobiles” and “about motorcycles”. Usually,
new data doesn’t come with a class label, so we have to somehow guess the
class from the features.2 With a nearest neighbor strategy, we guess that
the new object is in the same class as the closest already-classified object. (We
saw this at the end of the last lecture.) With a prototype strategy, we pick
out the “most representative” member of each class, or perhaps the average of
each class, as its prototype, and guess that new objects belong to the class with
the closer prototype. We will see many other classifier rules, in addition to
these two, but these are ones we can apply as soon as we know how to calculate
distance.

Queries Are Documents I promised that we could avoid having to come up
with an initial document. The trick to this is to realize that a query, whether
an actual sentence (“What are the common problems of the 2001 model year
Saturn?”) or just a list of key words (“problems 2001 model Saturn”) is a
small document. If we represent user queries as bags of words, we can use
our similarity searching procedure on them. If this works, we have a search
technique which find mostly-relevant things (the precision is high), and most
relevant items are found (the recall is high).

2If it does come with a label, we read the label.

2

Normalization Equal weight IDF weight
None 83 79

Document length 63 60
Euclidean length 59 21

Table 1: Number of mis-classifications in a larger (199 document) collection
of posts from rec.auto and rec.motorcycles, for different normalizations of
Euclidean distance, with and without IDF weighting. (Classification is by the
nearest neighbor method.)

Inverse Document Frequency (IDF) Weighting We are using features
(word counts) to identify documents which are relevant to our query. Not all
features are going to be equally useful. Some words are so common that they
give us almost no ability at all to discriminate between relevant and irrelevant
documents. In (most) collections of English documents, looking at “the”, “of”,
“a”, etc., is a waste of time. We could handle this by a fixed list of stop words,
which we just don’t count, but this at once too crude (all or nothing) and too
much work (we need to think up the list).

Inverse document frequency (IDF) is a more adaptive approach. The
document frequency of a w is the number of documents it appears in, nw.
The IDF weight of w is

IDF (w) ≡ log
N

nw

where N is the total size of our collection. Now when we make our bag-of-
words vector for the document Q, the number of times w appears in Q, Qw, is
multiplied by IDF (w). Notice that if w appears in every document, nw = N
and it gets an IDF weight of zero; we won’t use it to calculate distances. This
takes care of most of the things we’d use a list of stop-words for, but it also
takes into account, implicitly, the kind of documents we’re using. (In a data
base of papers on genetics, “gene” and “DNA” are going to have IDF weights
of near zero too.) On the other hand, if w appears in only a few documents, it
will get a weight of about log N , and all documents containing w will tend to
be close to each other.

Table 1 shows how including IDF weighting improves our ability to classify
posts as either about cars or about motorcycles.

You could tell a similar story about any increasing function, not just log,
but log happens to work very well in practice, in part because it’s not very
sensitive to the exact number of documents. So this is not the same log we will
see in information theory, or the log in psychophysics. Notice also that this is
not guaranteed to work. Even if w appears in every document, so IDF (w) = 0,
it might be common in some of them and rare in others, so we’ll ignore what
might have been useful information. (Maybe genetics papers about laboratory
procedures use “DNA” more often, and papers about hereditary diseases use
“gene” more often.)

3

— This is our first look at the problem of feature selection: how do we
pick out good, useful features from the very large, perhaps infinite, collection
of possible features? We will come back to this in various ways throughout the
course. Right now, concentrate on the fact that in search, and other classifi-
cation problems, we are looking for features that let us discriminate between
the classes.

Feedback People are much better at telling whether you’ve found what they’re
looking for than explaining what it is that they’re looking for. Queries are users
trying to explain what they’re looking for (to a computer, no less), so they’re
often pretty bad. An important idea in data mining is that people should do
things at which they are better than computers and vice versa: here they should
be deciders, not explainers. Rocchio’s algorithm takes feedback from the user,
about which documents were relevant, and then refines the search, giving more
weight to what they like, and less to what they don’t like.

The user gives the system some query, whose bag-of-words vector is Qt. The
system responses with various documents, some of which the user marks as
relevant (R) and others as not-relevant (NR). The system then modifies the
query vector:

Qt+1 = αQt +
β

|R|
∑

doc∈R

doc− γ

|NR|
∑

doc∈NR

doc

where |R| and |NR| are the number of relevant and non-relevant documents,
and α, β and γ are positive constants. α says how much continuity there is
between the old search and the new one; β and γ gauge our preference for recall
(we find more relevant items) versus precision (more of what we find is relevant).
The system then runs another search with Qt+1, and cycle starts over. As this
repeats, Qt gets closer to the bag-of-words vector which best represents what
the user has in mind, assuming they have something definite and consistent in
mind.

N.B.: A word can’t appear in a document a negative number of times, so or-
dinarily bag-of-words vectors have non-negative components. Qt, however, can
easily come to have negative components, indicating the words whose presence
is evidence that the document isn’t relevant. Recalling the example of problems
with used 2001 Saturns, we probably don’t want anything which contains “Ti-
tan” or “Rhea”, since it’s either about mythology or astronomy, and giving our
query negative components for those words suppresses those documents.

Rocchio’s algorithm works with any kind of similarity-based search, not just
text. It’s related to many machine-learning procedures which incrementally ad-
just in the direction of what has worked and away from what has not — the
stochastic approximation algorithm for estimating functions and curves, re-
inforcement learning for making decisions, Bayesian learning for updating
conditional probabilities, and multiplicative weight training for combining
predictors (which we’ll look at later in the course). This is no accident; they
are all special cases of adaptive evolution by means of natural selection.

4

−5 0 5 10

−6
−4

−2
0

2
4

V1

V2
auto1

auto2

auto3

auto4

auto5moto1

moto2

moto3

moto4
moto5

auto moto
Multidimensional scaling

10 best words,
Un-normalized counts,
1 error (picks moto4 for auto3)

−0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

V1

V2

auto1

auto2

auto3

auto4

auto5

moto1

moto2

moto3moto4moto5

auto moto
Multidimensional scaling

Normalized by document length,
1 error (picks auto5 for moto2)

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

V1

V2

auto1

auto2

auto3

auto4

auto5

moto1

moto2

moto3moto4moto5

auto moto
Multidimensional scaling

Normalized by Euclidean length,
No errors

5

−0.5 0.0 0.5

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

V1

V2
auto1

auto2

auto3

auto4

auto5
moto1

moto2

moto3

moto4

moto5

auto moto
Multidimensional scaling

182 words, equal weighting
5 errors (auto1,2,4, moto2,4)
(as bad as guessing)

−1.0 −0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

V1

V2

auto1

auto2

auto3

auto4

auto5

moto1

moto2

moto3

moto4

moto5

auto moto
Multidimensional scaling

182 words, IDF weighting
3 errors (auto4, moto1,4)

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

V1

V2

auto1

auto2

auto3

auto4

auto5

moto1

moto2

moto3moto4moto5

auto moto
Multidimensional scaling

10 best words (from last time)

6

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

V1

V2

1

2

3

4

5
6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

3233

34

35

36

37

38

39
40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68
69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86 88

89 90
91

92

93
94

95

96

97

98

99

100

1

2

3

4

5

6

7
8

9

10
11

12

13
14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

3031

32

33

34
35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

5556
57

58

59

6061

62

63

64

65

66

67

68
69

70

71

72

73

74
75

76

77

78

79

80

81

82

83

84

85
86

87

88

89

90

91

92
93

94

95

96

97

98

99

100

auto moto
Multidimensional scaling

7

Nearest-neighbor method

−1.0 −0.5 0.0 0.5 1.0

−0
.5

0.
0

0.
5

V1

V2

auto1

auto2

auto3

auto4

auto5

moto1

moto2

moto3

moto4

moto5

test

auto moto test
Multidimensional scaling

Prototype method— here prototype is the average of already-labeled doc-
uments

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

Multidimensional scaling

V1

V2

auto

moto

test

8

