
Lecture 3 Handout — Page Rank

36-350, Data Mining

29 August 2008

This is a brief over-view of the ideas behind page-rank that I talked about in
class today. One could add a lot of refinements and wrinkles, and in applications
they matter, but this gets at the principles.

Start with a random web-page, say i. Suppose this page has at least one out-
going link, to various other pages, j1, j2, . . . jin

. A simple random walk would
choose each of those links with equal probability:

Pij =
{

1
in

if j ∈ {j1, j2, . . . jin
}

0 otherwise

If starting page i has no out-going links, then Pij = 1/n, where n = the total
number of pages, for all j. That is, when the walk comes to a dead end, it
re-starts to a random location.

Let Xt be the page the random walk is visiting at time t, and N(i, n) be the
number of t ≤ n where Xt = i, the number of times Xt visits i. The page rank
of a page i is how often it is visited in the course of a very long random walk:

ρ(i) = lim
n→∞

N(i, n)
n

How do we know this is well-defined? Maybe the ratio doesn’t converge at all,
or it converges to something which depends on the page we started with.

Well, we know that the random walk is a Markov chain: the state of the chain
is the page being visited. (Why?) We also see that there is some probability
that the chain will go from any page to any other page eventually (if only by
eventually hitting a dead-end page and then randomly re-starting). So the
state-space of the Markov chain is strongly connected. The number of pages
is finite. And remember from probability models that a finite Markov chain
whose state-space is strongly connected obeys the ergodic theorem, which
says, precisely, that the fraction of time the chain spends in any one state goes
to a well-defined limit, which doesn’t depend on the starting state.

So one way to calculate the page-rank is just to simulate, i.e., to do a random
walk in the way I described. But this is slow, and there is another way.

Suppose that ν is a probability vector on the states, i.e., it’s an n-dimensional
vector whose entries are non-negative and sum to one. Then, again from prob-
ability models, if the distribution at time t is νt, the distribution one time-step

1



later is
νt+1 = νtP = ν0P

t

with P the transition matrix we defined earlier. It’s another result from proba-
bility that the νt keep getting closer and closer to each other, so that

lim
t→∞

ν0P
t = ρ

where ρ is a special probability distribution satisying the equation

ρ = ρP

That is, ρ is an eigenvector of P with eigenvalue 1. In fact, this ρ is the same
as the ρ we get from the ergodic theorem. So rather than doing the simulation,
we could just calculate the eigenvectors of P , which is often faster and more
accurate than the simulation.

Unpacking the last equation, it says

ρ(i) =
∑

j

ρ(j)Pij

which means that pages with high page-rank are ones which are reached, with
high probability, from other pages of high page-rank. This sounds circular, but,
as we’ve seen, it isn’t. In fact, one way to compute it is to start with ν0 being
the uniform distribution, i.e., ν0(i) = 1/n for all i, and then calculate ν1, ν2, . . .
until the change from νt to νt+1 is small enough to tolerate. That is, initially
every page has equal page-rank, but then it shifts towards those reached by
many strong links (ν1), and then to those with many strong links from pages
reached by many strong links (ν2), and so forth.

There is a very simple way to use page-rank to do search:

• Calculate ρ once.

• Given a query Q, find all the pages containing all the terms in Q.

• Return the matching page i where ρ(i) is highest (or the k pages with the
highest page-rank, etc.)

However, this is too simple — it presumes that a highly-linked-to page is always
good, no matter how tangential it might be to the topic at hand. From the
beginning, Google has used a combination of page-rank, similarity scores, and
many other things (most of them properietary) to determine its search results.

Computationally, all that matters is that there is a set of nodes with links
between them; the same algorithm could be applied to any sort of graph or net-
work. EigenFactor (eigenfactor.org) is a site which ranks academic journals
by using the citations in the papers they publish. There are also other ways
of using link structure to rank web-pages — Jon Kleinberg’s “hubs and au-
thorities” system distinguishes between the value of pages as authorities about
a particular topic, and hubs that aggregate information about many topics
(see http://www.cs.cornell.edu/home/kleinber/auth.pdf), and a version
of this is, apparently, incorporated into Ask.com.

2

eigenfactor.org
http://www.cs.cornell.edu/home/kleinber/auth.pdf

