
Categorizing Data Vectors

Types of Categorization, Basic Classifiers,

Finding Simple Clusters in Data

36-350: Data Mining

15 September 2008

Reading: Textbook, sections 9.3–9.5.

Categorization and Classifiers

Dividing data into discrete categories is one of the most common kinds of data-
mining task. Often the categories are things which are given to us in advance,
by some kind of background knowledge (cells: cancerous or not?), or the kind
of decision we are going to make (credit applicant: will they pay back the loan
or not?), or simply by some taxonomy which our institution has decided to use
(text: politics or religion? automobile or motorcycle?; pictures: flower, tiger or
ocean?). This case, of assigning new data to pre-existing categories, is called
classification, and the categories are called classes.

When we have some examples, or training data, which have been labeled
by someone who knew what they were doing, we have a supervised learning
problem. The point of classification methods is to accurately assign new, un-
labeled examples, from the test data, to these classes. This is “supervised”
learning because we can check the performance on the labeled training data.
The point of calculating information was to select features which made classifi-
cation easier.

We have already seen two algorithms for classification:

1. In prototype classification, we represent each class by a single vector,
its prototype, and assign new data to the class whose prototype is closest.
This uses little memory or computation time, but implicitly assumes that
each class forms a compact (in fact, convex) region in the feature space.

2. In nearest neighbor classification, we assign each new data point to the
same class as the closest labeled vector, or exemplar (or example, to
be slightly less fancy). This uses lots of memory (because we need to
keep track of many vectors) and time (because we need to calculate lots
of distances), but assumes a lot less about the geometry of the classes. In
fact, in a sense it assumes nothing about the geometry of the classes.

1



Known classes? Class labels Type of learning problem
Yes Given for training data Classification; supervised learning
Yes Given for some but not all training data Semi-supervised learning
Yes Hints/feedback Feedback or reinforcement learning
No None Clustering; unsupervised learning

Table 1: Kinds of learning problems

We will come back to trade-offs between methods which make strong as-
sumptions and methods which make weak assumptions, especially later when
we look at how to evaluate and compare predictive models.

Why Cluster?

All of this depends on having both known categories and labeled examples of
the categories. If there are known categories but no labeled examples, we may
be able to do some kind of query, feedback, reinforcement or learning, if
we can check guesses about category membership — Rocchio’s algorithm takes
feedback from a user and learns to classify search results as “relevant” or “not
relevant”. But we might not have known classes to start with. In these unsu-
pervised situation, one thing we can try to do is to discover categories which
are in implicit in the data themselves. These categories are called clusters,
rather than “classes”, and finding them is the subject of clustering or cluster
analysis. (See Table 1.)

(Even if our data comes to us with class labels attached, it’s often wise to
be skeptical of their use. Official classification schemes are often the end result
of a mix of practical experience; intuition; theory; prejudice; ideas copied from
somewhere else; compromises among groups which differ in interests, ideas and
clout; and people making stuff up because they need something by deadline.
Moreover, once a scheme gets established, organizational inertia can keep it in
place long after whatever relevance it once had has eroded away. The Census
Bureau set up a classification scheme for different jobs and industries in the
1930s, so that for several decades there was one class of jobs in “electronics”,
including all of the computer industry. The point being, even when you have
what you are told is a supervised learning problem with labeled data, it can
be worth treating it as unsupervised learning problem. If the clusters you find
match the official classes, that’s a sign that the official scheme is actually rea-
sonable and relevant; if they disagree, you have to decide whether to trust the
official story or your cluster-finding method.)

Good clusters

A good way to start thinking about how to cluster our data is to ask ourselves
what properties we want in clusters. First of all, clusters, like classes, should

2



partition the data: every possible object should belong to one, and only one,
cluster. Beyond that, it would be good if knowing which cluster an object
belonged to told us, by itself, a lot about that object’s properties. In other
words, we would like the expected information in the cluster about the features
to be large. If the features are X1, X2, . . . Xn, and the cluster is C, we would
ideally maximize

I[X1, X2, . . . Xn;C]

Actually doing this maximization turns out to be very hard. However, we can
say some things about what the maximally-informative clusters would look like,
and use these properties to guide our search.

A high information value for the clusters means that knowing the cluster
reduces our uncertainty about the features. All else being equal, this means that
the objects in a cluster should be similar to each other, or form a compact set
of points in feature-vector space. Again, all else being equal, different clusters
should have different distributions of features, so clusters should be separated.
If one of the clusters is much more probable than the others, learning which
cluster an object belongs to doesn’t reduce uncertainty about its features much,
so ideally the clusters should be equally probable, or balanced. Finally, we
could get a partition which was compact, separated and balanced by saying
each object was a cluster of one, but that would be silly, because we want the
partition to be parsimonious, with many fewer clusters than objects.

There are many algorithms which try to find clusters which are compact,
separated, balanced and parsimonious. Parsimony and balance are pretty easy
to quantify; measuring compactness and separation depends on having a good
measure of distance for our data to start with. (Fortunately, similarity search
has taught us a lot about distance!) We’ll look first at one of the classical
clustering algorithms, and try to see how it achieves all these goals.

The k-means algorithm

Recall that in the prototype method, we took the prototype for each class to be
its average or mean, and assigned new points to the class with the closest pro-
totype. The k-means algorithm is an unsupervised relative of the prototype
method for clustering, rather than classification.

1. Guess the number of clusters, k

2. Guess the location of cluster means

3. Assign each point to the nearest mean

4. Re-compute the mean for each cluster

5. If the means are unchanged, exit; otherwise go back to (3)

3



The objective function for k-means, what it “wants” to minimize, is the
sum-of-squares for the clusters:

SS ≡
∑
C

∑
i∈C

‖xi −mC‖2

mC ≡ 1
nC

∑
i∈C

xi

mC is the mean for cluster C, and nC is the number of points in that cluster.
The within-cluster variance for cluster C is

VC ≡ 1
nC

∑
i∈C

‖xi −mC‖2

so
SS =

∑
C

nCVc

In words, the sum of squares is the within-cluster variance times the cluster size,
summed over clusters. If each cluster is compact, they will have a small within-
cluster variance, so VC and SS will be small, so this objective function favors
compactness. It also favors balance, because big clusters are more “costly” than
small ones of equal variance.

Each step of k-means reduces the sum-of-squares. The sum-of-squares is
always positive. Therefore k-means must eventually stop, no matter where it
was started. However, it may not stop at the best solution.

K-means is a local search algorithm: it makes small changes to the solution
that improve the objective. This sort of search strategy can get stuck in local
minima, where the no improvement is possible by making small changes, but
the objective function is still not optimized.

It’s often helpful to think of this in terms of a search landscape, where
the height of the landscape corresponds to how good a solution the algorithm
has found. (So minimizing the objective function is the same as maximizing the
height on the landscape.) Local search is also called hill climbing, because it’s
like a short-sighted climber who tries to get to the top by always going uphill. If
the landscape rises smoothly to a central peak, this will get to that peak. But if
there are local peaks, it can get stuck at one, and which one it reaches depends
on where the climb starts.

For k-means, the different starting positions correspond to different initial
guesses about the cluster centers. Changing those initial guesses will change the
output of the algorithm. These are typically randomized, either as k random
data points, or by randomly assigning points to clusters and then computing
the means. Different runs of k-means will thus generally give different clusters,
but you can actually make use of this: if some points end up clustered together
in many different runs, that’s a good sign that they really do belong together.

4


