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1 Hierarchical clustering

The k-means algorithm gives us what’s sometimes called a simple or flat par-
tition, because it just gives us a single set of clusters, with no particular orga-
nization or structure within them. But it could easily be the case that some
clusters could, themselves, be closely related to other clusters, and more dis-
tantly related to others. (If we are clustering images, we might want not just
to have a cluster of flowers, but roses and marigolds within that. Or, if we’re
clustering patient medical records, we might want “respiratory complaints” as a
super-cluster of “pneumonia”, “influenza”, “SARS”, “miscellaneous sniffling”.)
So sometimes we want a hierarchical clustering, which is depicted by a tree
or dendrogram.

1.1 Ward’s method

Ward’s method is another algorithm for finding a partition with small sum
of squares. Instead of starting with a large sum of squares and reducing it, you
start with a small sum of squares (by using lots of clusters) and then increasing
it.

1. Start with each point in a cluster by itself (sum of squares = 0).

2. Merge two clusters, in order to produce the smallest increase in the sum
of squares (the smallest merging cost).

3. Keep merging until you’ve reached k clusters.

The merging cost is the increase in sum of squares when you merge two clusters
(A and B, say), and has a simple formula:

∆(A,B) =
∑

i∈A∪B

‖xi −mA∪B‖2 −
∑
i∈A

‖xi −mA‖2 −
∑
i∈C

‖xi −mB‖2

=
nAnB

nA + nB
‖mA −mB‖2

(You may recall having seen a similar formula for t-tests of the difference in
means.) Note that Ward’s method does not rely on a random starting guess, so
its answer is unique.
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The ∆ formula tells us that there is a trade-off between separation and
balance. If clusters are equally far apart (separated), it’s better to merge the
smaller ones. This means that Ward’s algorithm will sometimes merge clusters
which are further apart but smaller.

The k-means algorithm gives no guidance about what k should be. Ward’s
algorithm, on the other hand, can give us a hint through the merging cost. If
the cost of merging increases a lot, it’s probably going too far, so a rule of thumb
is to keep reducing k until the cost jumps, and then use the k right before the
jump.

The partitions produced by Ward’s method are nested: the partition of size
k is contained within the partition of size k + 1. It is also a greedy algorithm:
it always picks the merge whose immediate cost is smallest, without worrying
about whetheer this will impose bigger costs later on. These two properties
mean that Ward’s method generally does not produce a sum-of-squares as small
as k-means. If that really bothers you, run k-means starting from the Ward’s
method solution.

Figure 1 shows what Ward’s method does with the flower/tiger/ocean images
(represented, as usual, by bags of colors). This makes one clear mistake (it thinks
flower5 goes with the tigers rather than the other flowers), but otherwise looks
reasonable. The merging costs (Figure 1.1 suggest that there are 3 clusters (or
perhaps 6 or 8).

The sum of squares measures distance equally in all directions, so it wants
the clusters to be round. This is not always very sensible (see Figure 2).

1.2 The Single-link algorithm

Single-link clustering can handle any cluster shape:

1. Start with each point in a cluster by itself (sum of squares = 0).

2. Merge the two clusters with smallest gap (distance between the two closest
points)

3. Keep merging until you’ve reached k clusters.

It’s called “single link” because it will merge clusters so long as any two points
in them are close (i.e., there is one link).

This algorithm only wants separation, and doesn’t care about compactness
or balance. This can lead to new problems, as shown in Figure 3.

Question: how is the single-link method like nearest neighbor classification?
If k-means is the like the unsupervised version of the prototype method, what
would the unsupervised version of nearest neighbors be like?

2 How Many Clusters?

This is the big question. The heuristic for merging costs is just that, a heuristic.
One reason you should be intensely skeptical of clustering results — including
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Figure 1: Using Ward’s method to form a hierarchical clustering of the
flower/tiger/ocean pictures. Each cluster is labeled with the name of a color
which was common to both sub-groups but rare in the rest of the data — i.e.
the color is informative about sub-cluster membership.
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your own! — is that there is currently very little theory about how to find the
right number of clusters. It’s not even completely clear what “the right number
of clusters” means!

At one extreme, we could put every data point in its own cluster. Then the
clusters would be perfectly informative about the data. The downsides to this
are that (1) it makes cluster analysis pointless, and (2) the clusters will not help
us with new data-points. At the other extreme we could always decide that all
our data points really form one cluster, which might look weirdly irregular and
have an oddly lumpy distribution on it, at least as we’ve chosen to represent it.
This is sometimes even right, or at least sounds right!

Some people try to get around this by modifying the objective function used
in clustering, to add some penalty per cluster, or per level of hierarchy, etc. The
idea is to encourage parsimony: “everything should be as simple as possible,
but no simpler”. The difficulty is that these penalties are generally things pull
out of the air (to be polite about it), and there is no reason to think that they
really do give us good clusters in general.

The only real hope here, it seems to me, is to start from the fact that having
too many clusters generalizes badly. If the data really do fall into a few clusters,
then new data from the same source should fall into the same clusters. The
right number of clusters then would be the one which generalizes best to new
observations. There are multiple ways we could measure this:

• how much do cluster centers or boundaries move if we re-run clustering
on new data

• how much do cluster assignments change, ditto
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Figure 2: Some clustering problems where the single-link method does better
than k-means or Ward’s method. (In the k-means plots, the cluster means are
marked ×.)

• how big are the sum-of-squares, when assigning new data to the old clus-
ters?

Of course, to do any of these things we would need new data. Instead of
waiting to get new data, we could fake it by re-using some of the data we
already have. The general idea of cross-validation is to randomly divide the
data into a training set and a testing set, and use performance on the testing
set as a proxy for performance on genuinely new data. Repeated many times,
over many random divisions (ten-fold cross-validation, with 90% training and
10% testing, is common), this often gives a reasonable sense of how sensitive
our results are to sampling accidents, and how well they generalize to new data
from the same source.

What we would really like to do is look at how well the old clusters pre-
dict new data. (This is what the sum-of-squares notion points towards.) The
difficulty with doing that is none of the clustering algorithms we have looked
at so far is really predictive. (Even k-means doesn’t really predict the average
distance from points in a cluster from its center.) To put it another way, none
of our clustering procedures gives us a model which would let us generate or
simulate new data points (“synthetic data” or “surrogate data”). We will later
see various forms of cluster analysis which do use generative models, and while
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Figure 3: Some cases where k-means or Ward’s algorithm does better than the
single-link method.

they are more work it is actually clearer what they mean, and how to tell if they
are working.

A distinct but related question from how many clusters we should use is how
confident we should be about the statement “these two data points belong to
the same cluster”. A first cut would be to do cross-validation and see how often
the points in question wind up in the same cluster. A more refined approach
doesn’t seem to be possible unless you add some assumptions about the data-
generating process. Prof. Nugent has worked on the issue of “clustering with
confidence”, and I encourage those of you taking 36-401 from her to ask her
about it.
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