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Last time...

• K-means:  divide into k clusters to reduce 
within-cluser variance*cluster size

• Ward’s method: start with each point in own 
cluster, cluster the clusters
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Ward’s method applied 

to the images from 
earlier: ocean, tigers, 

flowers

Jump in merging cost 
suggests 3 clusters - 
almost exactly right 
ones, too (but thinks 

flower5 is a tiger)
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Merging cost vs.  # of clusters
Rule of thumb: stop when merging costs go way up

Here: 3 clusters (or 6 or 8...)
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k-Means Ward’s

Minimizing the  mean distance from the cluster center 
tends to make spheres, which can be silly

note how Ward’s
is less balanced
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Single-link clustering

1. Start with every point in its own cluster

2. Calculate gaps between every pair of 
clusters = distance between 2 closest points 
in each cluster

3. Merge clusters with smallest gap
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k-Means Ward’s Single-link
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Examples where single-link doesn’t work so well

k-Means Ward’s Single-link
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How many clusters?

• Can always improve sum-of-squares by 
adding more clusters

• Can generally improve any criterion by 
adding more clusters

• It seems silly to say that each point is in its 
own cluster
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Heuristics

• Merging cost: if reducing the number of 
clusters gives a big hit in performance, stop

• Why?

• What’s a big hit?

• Add a cost-per-cluster

• Why that cost?

10



Missing from the 
heuristics

• Clusters are good if the data really do fall 
into different categories with different 
characteristics; if not, not

• Summarizing the training data isn’t what we 
want!
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Real criteria

• External validity: Does knowing the cluster 
predict variables other than the ones used to 
determine cluster membership?

• If so, is it really the cluster, or one of those 
variables?

• Generalization to new data
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Generalization

• The model generalizes if it performs about as 
well on new data from the same source as it 
did on the training data

• This notion really only applies to predictive 
models

• Clustering tools we’ve seen hardly give us 
predictions
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Faking prediction 

• Look at sum of squares with old cluster 
centers on new data

• Look at tree structure on new data: leaves 
will be different, but how much of the tree 
shape changes?  Does the merging-cost 
graph look the same?

• How much do things change with a little 
new data added in to the old?
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Cross-validation

• Randomly divide the data into training and 
testing sets, say 90/10

• Fit the model on the training set and 
evaluate on the testing set

• Repeat several times, say 10

• Average the results
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Reification

• Treating your idea as an independently-
existing thing (res)

• Sometimes a good idea (bacteria), 
sometimes not (zodiac sign)

• Overwhelming temptation with clustering

• especially once you add names
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To play with

• Go to http://yawyl.claritas.com/ and figure 
out what they are doing

• Should you believe it?
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