Mathematics and Interpretation of Principal
Components

36-350: Data Mining
24 September 2008

1 Mathematics of Principal Components

There are several ways of deriving the principal components mathematically.
The simplest one, as I mentioned last time, is by finding the projection which
maximizes the variance. It might sound more plausible to look for the pro-
jection with the smallest average (mean-squared) distance between the original
vectors and their projections on to the principal components; this turns out to
be equivalent to maximizing the variance.

Throughout, assume that the data have been “centered”, so that every fea-
ture has mean 0. If we write the standardized data in a matrix X, where rows are
objects and columns are features, then X7 X = nV, where V is the covariance
matrix of the data. (You should check that last statement!)

1.1 Minimizing Projection Residuals

We'll start by looking for a one-dimensional projection. That is, we have p-
dimensional feature vectors, and we want to project them on to a line through
the origin. We can specify the line by a unit vector along it, w, and then
the projection of a data vector #; on to the line is & - @, which is a scalar.
(Sanity check: this gives us the right answer when we project on to one of
the coordinate axes.) This is the distance of the projection from the origin;
the actual coordinate in p-dimensional space is (#; - W)w. The mean of the
projections will be zero, because the mean of the vectors z; is zero:
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If we try to use our projected or image vectors instead of our original vectors,
there will be some error, because (in general) the images do not coincide with
the original vectors. (When do they coincide?) The difference is the error or
residual of the projection. How big is it? For any one vector, say zj, it’s
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(This is the same trick used to compute distance matrices in the solution to the
first homework; it’s really just the Pythagorean theorem.) Add those residuals
up across all the vectors:
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The term in the big parenthesis doesn’t depend on w, so it doesn’t matter for
trying to minimize the residual sum-of-squares. To make RSS small, what we
must do is make the term we subtract from it big, i.e., we want to maximize
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Equivalently, since n doesn’t depend on w, we want to maximize

which we can see is the sample mean of (& - f;)Q. The mean of a square is always
equal to the square of the mean plus the variance:
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Since we've just seen that the mean of the projections is zero, minimizing the
residual sum of squares turns out to be equivalent to maximizing the variance
of the projections.

(Of course in general we don’t want to project on to just one vector, but
on to multiple principal components. If those components are orthogonal and
have the unit vectors w7, w5, ... w, then the image of x; is its projection into
the space spanned by these vectors,
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The mean of the projection on to each component is still zero. If we go through
the same algebra for the residual sum of squares, it turns out that the cross-
terms between different components all cancel out, and we are left with trying
to maximize the sum of the variances of the projections on to the components.
(EXERCISE: Do this algebra.)



1.2 Maximizing Variance

Accordingly, let’s maximize the variance! Writing out all the summations grows
tedious, so let’s do our algebra in matrix form. If we stack our n data vectors
into an n X p matrix, X, then the projections are given by Xw, which is an
n x 1 matrix. The variance is
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We want to chose a unit vector w so as to maximize afv. To do this, we need
to make sure that we only look at unit vectors — we need to constrain the
maximization. The constraint is that @- @ = 1, or w”w = 1. This needs a brief
excursion into constrained optimization.

We start with a function f(w) that we want to maximize. (Here, that
function is w/Vw.) We also have an equality constraint, g(w) = c. (Here,
g(w) = wI'w and ¢ = 1.) We re-arrange the constraint equation so its right-
hand side is zero, g(w) — ¢ = 0. We now add an extra variable to the problem,
the Lagrange multiplier ), and consider u(w, \) = f(w)+A(g(w)—c). This is
our new objective function, so we differentiate with respect to both arguments
and set the derivatives equal to zero:
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That is, maximizing with respect to A gives us back our constraint equation,
g(w) = ¢. At the same time, when we have the constraint satisfied, our new ob-
jective function is the same as the old one. (If we had more than one constraint,
we would just need more Lagrange multipliers.)ﬂ

For our projection problem,

u = wiVw - Awlw—1) (14)
ou
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1To learn more about Lagrange multipliers, read [Boas| (1983)) or (more compactly) [Klein
(2001).



Thus, desired vector w is an eigenvector of the covariance matrix V, and
the maximizing vector will be the one associated with the largest eigenvalue
A. This is good news, because finding eigenvectors is something which can be
done comparatively rapidly (see Principles of Data Mining p. 81), and because
eigenvectors have many nice mathematical properties.

V is a p X p matrix, so it will have p different eigenvectors. V is a covariance
matrix, so it is symmetric, and linear algebra tells us that the eigenvectors must
be orthogonal to one another. The second principal component, remember, is
the direction with the most variance which is orthogonal to the first principal
component. Thus, the second principal compoent will be the eigenvector of
V corresponding to the second largest eigenvalue, and so on. Because it is
orthogonal to the first eigenvector, their projections will be uncorrelated. In
fact, projections on to all the principal components are uncorrelated with each
other. If we use k principal components, our weight matrix w will be a p x k
matrix, where each column will be a different eigenvector of the covariance
matrix V. The eigenvalues will give the share of the total variance described
by each component.

Back to the residuals The fraction of the total variance accounted for by
the first k principal components is the R? of the projection (just like with a
regression). The relative magnitude of the residuals then is 1 — R

2 Interpreting a PCA Plot

Last time, I drew a projection plot where, in addition to the data, I projected
unit vectors along each of the original features (Figure|[l]). This helped us guess
at what the principal components meant, and also told us how changing the
attribute values will change the projections.

We can also do this in reverse. If we take a projected point, we can estimate
its attribute values by looking at its position along the arrows. (That is, we can
find the image of the projected point from the arrows.) This estimate will be
good if R? is large. Similarly, the angles between the arrows give us an estimate
of the correlation between features. If the angle is 6, then the correlation is
roughly cos . This is exact when R? = 1, and gets worse as R? gets smaller.

2.1 A Recipe

We can now pull everything together to give a short recipe for how to interpret
a PCA plot.

To begin with, find the first two principal components of your data. (I say
“two” only because that’s what you can plot; see below.) It’s generally a good
idea to standardized all the features first, but not strictly necessary.

Coordinates Using the arrows, summarize what each coordinate (hy and hg)
means. For the cars data, h; indicates something like “overall size” and
ho something like “sporty”.



Correlations For many datasets, the arrows cluster into groups of highly cor-
related attributes. Describe these attributes. Also determine the overall
level of correlation (given by the R? value).

Clusters Clusters indicate a preference for particular combinations of attribute
values. Summarize each cluster by its prototypical member. For the cars
data, the vans form a cluster.

Funnels Funnels are wide at one end and narrow at the other. They happen
when one dimension affects the variance of another, orthogonal dimension.
Thus, even though the components are uncorrelated (because they are
perpendicular) they still affect each other. (They are uncorrelated but
not independent.) The cars data has a funnel, showing that small cars are
similar in sportiness, while large cars are more varied.

Voids Voids are areas inside the range of the data which are unusually unpop-
ulated. A permutation plot is a good way to spot voids. (Randomly
permute the data in each column, and see if any new areas become occu-
pied.) For the cars data, there is a void of sporty cars which are very small
or very large. This suggests that such cars are undesirable or difficult to
make.

Projections on to the first two or three principal components can be visu-
alized; however they may not be enough to really give a good summary of the
data. Usually, to get an R? of 1, you need to use all p principal componentsﬂ
How many principal components you should use depends on your data, and how
big an R2 you need. In some fields, you can get better than 80% of the variance
described with just two or three components. A sometimes-useful device is to
plot 1 — R? versus the number of components, and keep extending the curve it
until it flattens out.

3 PCA Cautions

Trying to guess at what the components might mean is a good idea, but like
many god ideas it’s easy to go overboard. Specifically, once you attach an idea
in your mind to a component, and especially once you attach a name to it, it’s
very easy to forget that those are names and ideas you made up; to reify them,
as you might reify clusters. Sometimes the components actually do measure
real variables, but sometimes they just reflect patterns of covariance which have
many different causes. If I did a PCA of the same features but for, say, 2007
cars, I might well get a similar first component, but the second component would
probably be rather different, since SUVs are now common but don’t really fit
along the sports car/mini-van axis.

2The exception is when some of your features are linear combinations of the others, so that
you don’t really have p different features.
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Figure 1: Projection of the cars data-vectors on to the first two principal com-
ponents, and the loads of the original features. (Reproduced from last time for

convenience.)



A more important example comes from population genetics. Starting thirty
years ago, L. L. Cavalli-Sforza and collaborators began a huge project of map-
ping human genetic variation — of determining the frequencies of different genes
in different populations throughout the world. (Cavalli-Sforza et al| (1994) is
the main summary; Cavalli-Sforza has also written several excellent popular-
izations.) For each point in space, there are a very large number of features,
which are the frequencies of the various genes among the people living there.
Plotted over space, this gives a map of that gene’s frequency. What they noticed
(unsurprisingly) is that many genes had similar, but not identical, maps. This
led them to use PCA, reducing the huge number of features (genes) to a few
components. Results look like Figure They interpreted these components,
very reasonably, as signs of large population movements. The first principal
component for Europe and the Near East, for example, was supposed to show
the expansion of agriculture out of the Fertile Crescent. The third, centered
in steppes just north of the Caucasus, was supposed to reflect the expansion
of Indo-European speakers towards the end of the Bronze Age. Similar stories
were told of other components elsewhere.

Unfortunately, as |Novembre and Stephens| (2008) showed, spatial patterns
like this are what one should expect to get when doing PCA of any kind of spatial
data with local correlations, because that essentially amounts to taking a Fourier
transform, and picking out the low-frequency componentsﬂ They simulated
genetic diffusion processes, without any migration or population expansion, and
got results that looked very like the real maps (Figure [3). This doesn’t mean
that the stories of the maps must be wrong, but it does undercut the principal
components as evidence for those stories.
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Figure 2: Principal components of genetic variation in the old world, according
to (Cavalli-Sforza et al.| (1994]), as re-drawn by Novembre and Stephens| (2008).
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Figure 3: How the PCA patterns can arise as numerical artifacts (far left col-

umn) or through simple genetic diffusion (next column). From
Stephens| (2008).
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