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1 Recap

Let’s recall what the factor analysis model looks like. We have n observations
of p factors; Xij is the value of feature j for object i. Our hypothesis is that
these values arise from a linear combination of k factors, Fir, plus noise, εij :

Xij = εij +
k∑

r=1

Firwrj (1)

We assume that the features have been centered to have mean zero.1 We also
assume that all the εij have mean zero and are uncorrelated with each other
and with the factors Fir, but the variance depends on j, Var [εij ] = ψj . The
parameters of the model are the factor loadings wrj , the specific variances ψj ,
and the actual factor scores Fir. We assume that the factors are uncorrelated
with each other and uncorrelated across cases. For convenience (there’s no loss
of generality) we take the means of the factors to be zero and their variances to
be one.

In matrix form, the model is

X = ε+ Fw (2)

By taking the product XT X, we get n times the sample covariance matrix V,
and so the model boils down to

V = Ψ + wT w (3)

where Ψ is the diagonal matrix whose entries are the ψj . In this form, the factor
scores have have disappeared. (Hopefully this will make the estimation problem
simpler, and not impossible.)

We left the story just after observing Eq. 3 is really one equation for each
element of V, i.e., p2 equations, but that there are only p + pk unknowns on
the right hand side (the diagonal elements of Ψ, plus the elements of w), and
that systems with more equations than unknowns generally cannot be solved.
This makes it sound like it’s actually impossible to estimate the factor analysis
model!

Let’s see how to dig ourselves out of this hole.
1It’s common to also standardize them to have variance 1, but not necessary.
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2 Estimation by Linear Algebra

The means of escape is linear algebra.

2.1 A Clue from Spearman’s One-Factor Model

Remember from last time Spearman’s model with a single general factor. The
covariance between features a and b in that model is the product of their factor
weightings:

Vab = wawb

The exception is that Vaa = w2
a + ψa, rather than w2

a. However, if we look at
U = V −Ψ, that’s the same as V off the diagonal, and a little algebra shows
that its diagonal entries are, in fact, just w2

a. (Exercise: Do that algebra.) So
if we look at any two rows of U, they’re proportional to each other:

Ua· =
wa

wb
Ub·

This means that, when Spearman’s model holds true, there is actually only one
linearly-independent row in in U. Rather than having p2 equations, we’ve only
got p independent equations.2

Recall from linear algebra that the rank of a matrix is how many linearly
independent rows it has.3 Ordinarily, the matrix is of full rank, meaning
all the rows are linearly independent. What we have just seen is that when
Spearman’s model holds, the matrix U is not of full rank, but rather of rank 1.
More generally, when the factor analysis model holds with k factors, the matrix
has rank k.

2.2 Estimating Factor Loadings and Specific Variances

We are now in a position to set up the classic method for estimating the factor
model.

As in previous subsection, define U = V − Ψ. This is the reduced or
adjusted covariance matrix. The diagonal entries are no longer the variances
of the features, but the variances minus the specific variances. These common
variances or commonalities show how much of the variance in each feature is
associated with the variances of the latent factors. U is still, like V, a positive
symmetric matrix. We can’t actually calculate U until we know, or have a guess,
as to Ψ. A reasonable and common starting-point is to do a linear regression
of each feature j on all the other features, and then set ψj to the residual sum
of squares for that regression.

Because U is a positive symmetric matrix, we know from linear algebra that
it can be written as

U = CDCT (4)

2This creates its own problems when we try to estimate the factor scores, as we’ll see.
3We could also talk about the columns; it wouldn’t make any difference.
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where C is the matrix whose columns are the eigenvectors of U, and D is
the diagonal matrix whose entries are the eigenvalues. That is, if we use all
p eigenvectors, we can reproduce the covariance matrix exactly. Suppose we
instead use Ck, the p×k matrix whose columns are the eigenvectors going with
the k largest eigenvalues, and likewise make Dk the diagonal matrix of those
eigenvalues. Then CkDkCk

T will be a symmetric positive p × p matrix. It
won’t quite equal U, but it will come closer as we let k grow towards p, and at
any given k, this matrix comes closer to being U than any other we could put
together which had rank k.

Now define Dk
1/2 as the k × k diagonal matrix of the square roots of the

eigenvalues. Clearly Dk = Dk
1/2Dk

1/2. So

CkDkCk
T = CkDk

1/2Dk
1/2Ck

T =
(
CkDk

1/2
) (

CkDk
1/2

)T

(5)

So we have
U ≈

(
CkDk

1/2
) (

CkDk
1/2

)T

(6)

but at the same time we know that U = wT w. So first we identify w with(
CkDk

1/2
)T

:

ŵ =
(
CkDk

1/2
)T

(7)

Now we use w to re-set Ψ, so as to fix the diagonal entries of the covariance
matrix.

ŵ =
(
CkDk

1/2
)T

(8)

ψ̂j = Vjj −
k∑

r=1

w2
rj (9)

V ≈ V̂ ≡ Ψ̂ + ŵT ŵ (10)

The “predicted” covariance matrix V̂ in the last line is exactly right on the
diagonal (by construction), and should be closer off-diagonal than anything else
we could do with the same number of factors — i.e., the same rank for the U
matrix. However, our estimate of U itself has in general changed, so we can try
iterating this (i.e., re-calculating Ck and Dk), until nothing changes.

Let’s think a bit more about how well we’re approximating V. The approx-
imation will always be exact when k = p, so that there is one factor for each
feature (in which case Ψ = 0 always). Then all factor analysis does for us is
to rotate the coordinate axes in feature space, so that the new coordinates are
uncorrelated. (This is the same was what PCA does with p components.) The
approximation can also be exact with fewer factors than features if the reduced
covariance matrix is of less than full rank, and we use at least as many factors
as the rank.
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3 Maximum Likelihood Estimation

It has probably not escaped your notice that the estimation procedure above
requires a starting guess as to Ψ. This makes its consistency somewhat shaky.
(If we continually put in ridiculous values for Ψ, there’s no reason to expect
that ŵ → w, even with immensely large samples.) On the other hand, we know
from our elementary statistics courses that maximum likelihood estimates are
generally consistent, unless we choose a spectacularly bad model. Can we use
that here?

We can, but at a cost. We have so far got away with just making assumptions
about the means and covariances of the factor scores F. To get an actual
likelihood, we need to assume something about their distribution as well.

The usual assumption is that Fir ∼ N (0, 1), and that the factor scores
are independent across factors r = 1, . . . k and individuals i = 1, . . . n. With
this assumption, the features have a multivariate normal distribution ~Xi ∼
N (0,Ψ + wT w). This means that the log-likelihood is

L = −np
2

log 2π − n

2
log |Ψ + wT w| − n

2
tr

(
(Ψ + wT w)

−1
V

)
(11)

where trA is the trace of the matrix A, the sum of its diagonal elements.
One can either try direct numerical maximization, or use a two-stage pro-

cedure. Starting, once again, with a guess as to Ψ, one finds that the optimal
choice of Ψ1/2wT is given by the matrix whose columns are the k leading eigen-
vectors of Ψ1/2VΨ1/2. Starting from a guess as to w, the optimal choice of Ψ
is given by the diagonal entries of V −wT w. So again one starts with a guess
about the unique variances (e.g., the residuals of the regressions) and iterates
to convergence.4

The differences between the maximum likelihood estimates and the “prin-
cipal factors” approach can be substantial. If the data appear to be normally
distributed (as shown by the usual tests), then the additional efficiency of max-
imum likelihood estimation is highly worthwhile. Also, as we’ll see next time,
it is a lot easier to test the model assumptions is one uses the MLE.

3.1 Estimating Factor Scores

The probably the best method for estimating factor scores is the “regression”
or “Thomson” method, which says

F̂ir =
∑

j

Xijbij (12)

and seeks the weights bij which will minimize the mean squared error, E[(F̂ir −
Fir)2]. You will see how this works in a homework problem.

4The algebra is tedious. See section 3.2 in Bartholomew (1987) if you really want it. (Note
that Bartholomew has a sign error in his equation 3.16.)
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4 The Rotation Problem

Recall from linear algebra that a matrix O is orthogonal if its inverse is the
same as its transpose, OT O = I. The classic examples are rotation matrices.
For instance, to rotate a two-dimensional vector through an angle α, we multiply
it by

Rα =
[

cosα − sinα
sinα cosα

]
The inverse to this matrix must be the one which rotates through the angle −α,
R−1

α = R−α, but trigonometry tells us that R−α = RT
α .

To see why this matters to us, go back to the matrix form of the factor
model, and insert an orthogonal matrix k × k and its transpose:

X = ε+ Fw (13)
= ε+ FOOT w (14)
= ε+ Gu (15)

We’ve changed the factor scores to G = FO, and we’ve changed the factor
loadings to u = OT w, but nothing about the features has changed at all. We
can do as many orthogonal transformations of the factors as we like, with no
observable consequences whatsoever.5

Mathematically, this should not be all that surprising. The factor live in
a k-dimensional vector space of their own. We should be free to set up any
coordinate system we feel like on that space. Changing coordinates in factor
space will, however, require a compensating change in how factor space relates
to feature space (the factor loadings matrix w). That’s all we’ve done here with
our orthogonal transformation.

Substantively, this should be rather troubling. If we can rotate the factors
as much as we like without consequences, how on Earth can we interpret them?
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