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1 Data: The United States circa 1977

The state.x77 data set is available by default in R; it’s a compilation of data
about the US states put together from the 1977 Statistical Abstract of the United
States, with the actual measurements mostly made a few years before.1 It’s a
little long in the tooth now but handy for teaching purposes.

The variables are:
Population in thouusands
Income dollars per capita
Illiterarcy Percent of the population
Life Exp Years of life expectancy at birth
Murder Number of murders and non-negligent manslaughters per 100,000 people
HS Grad Percent of adults who were high-school graduates
Frost Mean number of days per year with low temperatures below freezing
Area In square miles

You can do help(state.x77) for a little more detail. There is also a state.center
data set, giving the longitude and latitude of the geographic center of each state
(except for Alaska and Hawaii, which are artificially put somewhere off the west
coast) — see Figures 1 and 2.

1The Statistical Abstract is “the best book published in America” (P. Krugman), an im-
mensely valuable compilation of data about a huge range of aspects of American life, put out
every year by the Census Bureau. It’s available for free online at http://www.census.gov/

compendia/statab/.
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Figure 1: Geographic centers of the US states, per R’s built-in state.center
data set. N.B. Alaska and Hawaii are artificially brought close to the lower 48.
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plot.new() # Start up a new plot
# How big is the plotting window? Set ranges from the data we’ll be graphing
plot.window(xlim=range(state.center$x),ylim=range(state.center$y))
# Put the name of each state at its center. Shrink text 25% so there’s less
# overlap between the names.
text(state.center,state.name,cex=0.75)
# Add the horizontal axis at the bottom and the vertical at the left.
axis(1)
axis(2)
# Draw a box.
box()
# Add the titles
title(main="Where R Thinks the US States Are",xlab="Longitude",ylab="Latitude")

Figure 2: R code for drawing Figure 1.
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2 Principal Components

The command prcomp is the preferred command for principal component analy-
sis in R. It performs a singular value decomposition directly on the data matrix;
this is slightly more accurate than doing an eigenvalue decomposition on the
covariance matrix but conceptually equivalent. A naive approach here is unre-
warding.

> prcomp(state.x77)
Standard deviations:
[1] 8.532765e+04 4.465107e+03 5.591454e+02 4.640117e+01
[5] 6.043099e+00 2.461524e+00 6.580129e-01 2.899911e-01

. . . followed by more output specifying the principal components. The standard
deviations here are the square roots of the eigenvalues. (Exercise: why are
the square roots standard deviations?) To see this another way, use the plot
command on the output of prcomp:

plot(prcomp(state.x77),type="l")

The output is Figure 3.
The thing to notice is that the first eigenvalue is immensely larger than the

others. Naively, one might think this means that there’s just one component
here and our job is done. In reality, this is because we’ve chosen units where
one variable is immensely larger than the others, so it varies much more.

> apply(state.x77,2,sd)
Population Income Illiteracy Life Exp

4.464491e+03 6.144699e+02 6.095331e-01 1.342394e+00
Murder HS Grad Frost Area

3.691540e+00 8.076998e+00 5.198085e+01 8.532730e+04

In other words, typical variations in area from state to state are orders of mag-
nitude larger than anything else. And in fact if we look at the principal com-
ponents, the first one is giving us area, and everything else is noise. We can see
this by doing a biplot of the data and the original features together (Figure
4).

biplot(prcomp(state.x77),cex=(0.75,1))
# Plot original data points and feature vectors against principal
# components; shrink data-point names by 25% for contrast/legibility

Things are a lot better if we standardize the variables to have variance 1.
prcomp will do this for us. (See Figure 5.)

biplot(prcomp(state.x77,scale.=TRUE),cex=c(0.5,0.75))

Looking at the plot, several things are striking.
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prcomp(state.x77)
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Figure 3: Scree plot for PCA of the unscaled state.x77 data, created using.
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Figure 4: PCA plot of the state.x77 data set without scaling. Note how the first
principal component is basically just area; in the units chosen, this is orders of
magnitude more variable than anything else.
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Figure 5: PCA plot of the state.x77, rescaling features to have variance 1. The
first principal component distinguishes between cold, educated, long-lived states
with low violence from warm, ill-educated, shorted-lived, murderous states,
which also tend to be poorer. The second principal component most distin-
guishes big, populous, rich states from small, poor ones, which have some ten-
dency to be less murderou and a very weak tendency to be warmer.
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1. The first principal component, the one which summarizes the most vari-
ance, is very nearly the same as the illiteracy rate (on the positive dimen-
sion) or life expectancy (going the other way), and almost the same as
the number of frost days per year. The murder rate projects very strongly
on to the positive direction of the first principal component. Put a bit
crudely, PC1 distinguishes between cold states with educated, harmless,
long-lived populations, and warm, ill-educated, short-lived, violent states.

2. The second PC correlates extremely closely with area — states really do
vary hugely in their area, even when you standardize. It also strongly
correlates with population and income, and more weakly with secondary
education and murder. More weakly, it negatively correlates with life
expectancy and frost. The second PC distinguishes big rich educated
states from small poor ignorant states, which tend to be a bit warmer,
and less murderous.

3. The two leading components are not independent — high values of PC2
imply a very narrow range of PC1 values.

4. Alaska was something of an outlier; Hawaii, on the other hand, was as
close to being typically American as anywhere. (Make of this what you
will.)

Looking at the scree plot, there is no obvious point at which it levels off or
otherwise breaks; you could argue for one principal component or five.

The fact that PC1 is so close to the “frost” variable suggests that part of
what’s being picked up here is the difference between the South and the rest of
the country.2 There are two ways we could try to follow up on that. One would
be to include a categorical variable for the region. Unfortunately, PCA only
works with numerical, metrical values. We could try to finesse that by assigning
numbers to the categories, and people do that sometimes, but the results become
totally hostage to which numbers we use — i.e., under our control, and not in a
good way. There are models which will let us combine both variable types, but
it will take us a while to develop them properly.

The other approach is to throw in latitude and longitude as variables. We’d
need both, because, e.g., New Mexico isn’t part of the South, while Kentucky
is. Let’s make that data.

> state.x77.centers = cbind(state.x77,state.center$x,state.center$y)
> colnames(state.x77.centers) = c(colnames(state.x77),"Longitude","Latitude")

The first line creates a new array by adding on the longitudes as latitudes as
columns. The second names the columns, copying over the column names from
state.x77. Let’s run this through PCA (Figure 7).

> biplot(prcomp(state.x77.centers,scale.=TRUE),cex=c(0.5,0.8))

8



prcomp(state.x77, scale. = TRUE)
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Figure 6: Screen plot for the state.x77 data, with features scaled to variance
1. Notice the absence of a really sharp break. Arguably there is a break at 5.
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Figure 7: PCA plot when latitude and longitude are added as variables.
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The first principal component is still nearly (but not quite) the life-expectancy-
and-frost/illiteracy axis. But it’s also nearly the latitude/illiterarcy axis. (The
correlation between frost days and latitude is, not surprisingly, stronger than
the correlation between latitude and life expectancy, but the latter have more
similar projections on to the first two components!) Murder rate still strongly
projects on to this axis, with the opposite sign from latitude, as one might ex-
pect. Longitude is measured in negative degrees east of the prime meridian, i.e.,
larger longitude is more easterly, and we see that there is a negative relationship
between longitude and area — eastern states tend to be smaller than western
states. This is now the second principal component.

One last tweak before setting PCA down. We might suspect that some of
the features here aren’t related to population or area on their own, but rather
with population density — people per square mile. Population density is a
nonlinear transformation of two of the features, so it can’t really be faked with
PCA. (Exercise: Why not?) However, nothing stops us adding it on our own
(Figure 8).

> states.density = cbind(state.x77,
state.x77[,"Population"]/state.x77[,"Area"],
state.center$x,state.center$y)

> colnames(states.density) = c(colnames(state.x77),"Density","Longitude",
"Lattitude")

> biplot(prcomp(states.density,scale.=TRUE),cex=c(0.5,0.75))

The first component hasn’t changed very much, but now the second component
is very nearly density! In fact, because the first component is very nearly latitude
and the second longitude, is this very much like a rotated version of the state
map we started with. (Give the PCA plot a quarter-turn clockwise.) It’s not
quite the same — for example, Hawaii is closer to the center than California or
Texas! — but it’s actually a pretty good match.

Notice that in all our principal component plots, the “frost” and “murder”
features have pointed in more or less the opposite directions. When we add
in latitude and longitude, murder is very strongly negatively related to lati-
tude, i.e., more southernly states tend to have a higher murder rate. This is
interesting, but it would be more interesting if we could say something about
why.

Presumably murders do not cause an absence of frost3, but maybe hot
weather makes people lose their tempers? If so, we might expect murder rates
to rise across the country with climate change. On the other hand, we can
randomize the frost values and see what happens.

> states.density.randfrost = states.density
> states.density.randfrost[,"Frost"] = sample(states.density[,"Frost"])
> biplot(prcomp(states.density.randfrost,scale.=TRUE),cex=c(0.5,0.8))

2It may especially suggest this if you were brought up just below the Mason-Dixon line,
while being taught that the Civil War was “treason in defense of slavery.”

3But see Frazer (1922).
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Figure 8: PCA plot including the additional variable of density (inhabitants
per square mile). Compare this to the map. — Note that the placement of
points here looks fairly random, i.e., the two components are closer to being
independent (though they’re still not).
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This makes a copy of the states.density array. Then it randomly permutes
the “Frost” column, and repeats the PCA. The R function for sampling from a
vector is sample, but it defaults to sampling without replacement, and making
the sample size as large as the original, which gives a random permutation of
the vector. (See help(sample).) We could also randomize by, say, putting in
Gaussian values with the same mean and variance, but this is just as easy and
does not commit us to distributional assumptions.

What the biplot shows is that randomizing frost doesn’t actually have much
effect on the first two components, and in particular the homicide rate remains
very close to PC1.

Maybe currently-hot places have some other characteristic, not so obvious
from the data set, which actually affects homicide?4 These are the kinds of
questions which may be suggested by a method like PCA, but which it can’t
actually answer.

4For an interesting and largely-persuasive conjecture about why murder rates are higher in
the south, see Nisbett and Cohen (1996).
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Figure 9: PCA plots with the Frost variable randomly permuted, for three different

permutations. Note that it typically has a substantial projection on to PC1 and PC2;

it’s bimodal, so it’s easy for fluctuations to make it look reasonably correlated with

other variables.
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3 Factor Analysis

Now let’s do some factor analyses. The R command for maximum likelihood
factor estimation is factanal.

We’d like to make plots similar to the ones we’ve made for PCA. Unfortu-
nately the output of factanal is not structured in the way that biplot likes.
Fortunately it’s not too hard to bridge them (code in Fiure 10).

We’d also like to make scree plots (Figure 11).
Now let’s let rip. We’ll start with a single factor.

> factanal(states.density,factors=1)

Call:
factanal(x = states.density, factors = 1)

Uniquenesses:
Population Income Illiteracy Life Exp Murder

0.959 0.768 0.186 0.545 0.358
HS Grad Frost Area Density Longitude
0.505 0.512 0.999 0.998 0.976

Lattitude
0.347

Loadings:
Factor1

Population -0.202
Income 0.481
Illiteracy -0.902
Life Exp 0.674
Murder -0.801
HS Grad 0.704
Frost 0.699
Area
Density
Longitude -0.153
Lattitude 0.808

Factor1
SS loadings 3.847
Proportion Var 0.350

Test of the hypothesis that 1 factor is sufficient.
The chi square statistic is 216.17 on 44 degrees of freedom.
The p-value is 1.42e-24

Let’s break this down. We’re looking for a single factor which summarizes
as much of the correlations among the variables as possible. What we find is
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# Make a biplot from the output of factanal
# Presumes: fa.fit is a fitted factor model of the
# type returned by factanal
# fa.fit contains a scores object
# fa.fit has at least two factors!
# Inputs: fitted factor analysis model, additional
# parameters to pass to biplot()
# Side-effects: Makes biplot
# Outputs: None
biplot.factanal <- function (fa.fit,...)
{
# Get the first two columns of scores, i.e.,
# scores on first two factors
x = fa.fit$scores[,1:2]
# Get the loadings on the first two factors
y = fa.fit$loadings[,1:2]
biplot(x,y,...)
}

Figure 10: Function for making biplots from the output of factanal. If I were
a real programmer, I’d add in tests for the presumptions, and tell R to run this
function when biplot is called with an input of class factanal. But I’m not.

# Make scree (eigenvalue-magnitude) plots from
# the output of factanal()
# Input: fitted model of class factanal,
# x-axis label (default "factor"),
# y-axis label (default "eigenvalue")
# graphical parameters to pass to plot()
# Side-effects: Plots eigenvalues vs. factor number
# Output: None
screeplot.factanal <- function(fa.fit,xlab="factor",ylab="eigenvalue",...) {
# sum-of-squares function for repeated application
sosq <- function(v) {sum(v^2)}
# Get the matrix of loadings
my.loadings <- as.matrix(fa.fit$loadings)
# Eigenvalues can be recovered as sum of
# squares of each column
evalues <- apply(my.loadings,2,sosq)
plot(evalues,xlab=xlab,ylab=ylab,...)
}

Figure 11: Scree-plot function for objects of class factanal.
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Figure 12: Plot of the factor scores for a one-factor analysis by geographic
location.

something with a strong positive relationship with latitude; specifically, a one
standard deviation increase in the factor increases latitude by 0.808. There is
also a positive relationship with high school graduation rates, income, and frost,
though those are all weaker. It has a strong negative relationship with illiteracy
(−0.902) and homicide (−0.801), and a weaker negative one with population
and longitude. (Geographically, there is less of this factor in the southeast than
elsewhere — Figure 12.)

The size of the eigenvalue for this factor is 3.847. This is the amount of
variance in the (standarized) features which is summarized by this factor. The
total variance is just equal to the number of features (Exercise: why?), so
we’re capturing 3.847/11 = 0.350 of the variance.

Finally, the last part of the output does a simple goodness-of-fit test, which
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library(lattice) # For more graphics commands!
state.g = cbind(state.center$x,

state.center$y,
factanal(states.density,factors=1,scores="regression")$scores)

colnames(state.g) = c("Longitude","Latitude","G")
levelplot(state.g[,"G"]~state.g[,"Longitude"]*state.g[,"Latitude"],

xlab="Longitude",ylab="Latitude")
# See help(levelplot) for more

is only reliable if we make the assumption that everything is Gaussian and the
parameters are estimated by maximum likelihood. The factor model is then a
restriction of the general multivariate Gaussian model, for which the maximum
likelihood estimate is just the empirical covariance matrix. What we know
from general statistical theory is that twice the log likelihood ratio between an
unrestricted model and a restricted model,

R = 2L(θ̂unrestricted)− 2L(θ̂restricted) (1)

has a χ2 distribution if the restricted model is right and they are both estimated
by maximum likelihood. The number of degrees of freedom is the number of
extra parameters which are free in the unrestricted model. The actual calcula-
tions here are tedious, so it’s better to have the computer do them. Basically
it amounts to comparing the correlation matrix we’d expect under the fitted
model and the one we actually observe.

The upshot in this case is that the fit is horrible. So much, then for the one
factor model. How about two?

The plotting command is

biplot.factanal(factanal(states.density,factors=2,scores="regression"),
cex=c(0.5,0.8))

which delivers Figure 13.
This isn’t too far from the principal components plot, but it’s also not the

same. How are we doing on model fitting?

Factor1 Factor2
SS loadings 3.886 1.962
Proportion Var 0.353 0.178
Cumulative Var 0.353 0.532

Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 144.43 on 34 degrees of freedom.
The p-value is 1.45e-15

Again, horrible, though we’re now accounting for over half the variance.
What about three?
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Figure 13: Biplot of the two-factor model.
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Figure 14: Biplot for the three-factor model, showing scores for the two largest
factors.
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Factor1 Factor2 Factor3
SS loadings 3.819 2.098 1.265
Proportion Var 0.347 0.191 0.115
Cumulative Var 0.347 0.538 0.653

Test of the hypothesis that 3 factors are sufficient.
The chi square statistic is 99.02 on 25 degrees of freedom.
The p-value is 9.17e-11

Notice that adding more factors is causing the loadings on to the first two
factors, and hence the arrows in the biplot, to move around. This doesn’t
happen with PCA.

Let’s go all the way to the largest number of factors that we can fit (Figures
15 and 16).

> states.density.fa6 <- factanal(states.density,factors=6,scores="regression")
> biplot.factanal(states.density.fa6,cex=c(0.5,0.75))
> screeplot.factanal(states.density.fa6,type="b")

The fit is finally not bad:

Factor1 Factor2 Factor3 Factor4 Factor5 Factor6
SS loadings 2.411 1.920 1.603 1.501 1.074 0.986
Proportion Var 0.219 0.175 0.146 0.136 0.098 0.090
Cumulative Var 0.219 0.394 0.539 0.676 0.774 0.863

Test of the hypothesis that 6 factors are sufficient.
The chi square statistic is 5.11 on 4 degrees of freedom.
The p-value is 0.276

This said, it’s not right to just take this p-value naively. We have done a whole
bunch of hypothesis tests, and the more tests you do at a fixed size, the more
likely you are to have a false positive. So we should really do some kind of
control for the multiple tests. We will return to this issue later.

Notice also that this goodness-of-fit test is not checking lots of the back-
ground assumptions to the factor-analysis model: that the data have a Gaussian
distribution, for example, or that the observations are IID samples. (Just how
plausible is it that Oklahoma is completely independent of Texas, or Connecticut
of New York?)

Notice also that we haven’t even begun to address the issue of rotations, i.e.,
of applying some transformation to the factors which doesn’t change their ob-
servable implications, but might make things like Figure 15 easier to understand.
(This is controlled by the rotation argument to factanal.)
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Figure 15: Biplot with six factors.
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Figure 16: Scree plot for six factors.
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