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1 The Truth about Principal Components Anal-
ysis

Principal components tries to re-express the data as a sum of uncorrelated
components. There are lots of other techniques which try to do similar things,
like Fourier analysis, or wavelet decomposition. Things like Fourier analysis
decompose the data into a sum of a fixed set of basis functions or basis vectors.
This has the advantage of making results comparable across data sets, and of
making the meaning of the components clear. So why ever do PCA rather than
a Fourier transform?

First, in some situations the idea of doing a Fourier transform is just embar-
rassingly weird. For the states or cars data ets, we could number the features
and take cosines of the feature numbers, etc., but it just seems crazy. No such
embarrassment attends PCA. Second, when using a fixed set of components,
there is no guarantee that a small number of components will give a good re-
construction of the original data. PCA guarantees that the first k components
will do a better (mean-square) job of reconstructing the original data than any
other linear method using only k components. Third, it is good at preserving
distances between the points — the component scores give the optimal linear
multidimensional scaling (see section 3.7 of Principles of Data Mining).

PCA gives us uncorrelated components, which are generally not independent
components; for that you need independent component analysis (Stone, 2004).
PCA looks for linear combinations of the original features; one could well do
better by finding nonlinear combinations. Rather than directions in feature
space, these would be curves or surfaces.

PCA is purely a descriptive technique; in itself it makes no prediction about
what future data will look like.

1.1 Convergence

If the data come from IID samples of a distribution with covariance matrix U,
then the sample covariance matrix V ≡ 1

nXT X will converge on U as n →∞.
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Since the principal components are functions of V (namely its eigenvectors),
they will tend to converge as n grows1. So, along with that additional assump-
tion about the data-generating process, PCA does make a prediction: that
future PCA results will look like the present ones.

1.2 Simulating with PCA

One can also try to turn PCA into a model which makes predictions about
future data vectors more directly. The observed features are re-written in terms
not just of the PCs but also of the projections along those PCs. One could try
replacing those projection scores with random numbers and then transforming
back into features to get new, simulated feature vectors. That is, PCA writes
H = Xw, so that Hw−1 = X. (This holds exactly if we use the full set of all
p principal components.) Replace the component scores in H with similar but
random numbers, say J, and one will get a new set of random feature vectors,
Y = Jw−1. We could get J either by fitting some distribution to H, or, less
parametrically, by re-sampling the latter’s columns.2 (Exercise: What will the
covariance matrix of Y be?) This kind of approach is sometimes used to create
synthetic data for testing other algorithms, or to check whether the combination
of components resembles the original in more qualtitative ways than just mean
squared error.3

1There is a wrinkle if U has “degenerate” eigenvalues, i.e., two or more eigenvectors with
the same eigenvalue. Then any linear combination of those vectors is also an eigenvector, with
the same eigenvalue. (Exercise: show this.) For instance, if U is the identity matrix, then
every vector is an eigenvector, and PCA routines will return an essentially arbitrary collection
of mutually perpendicular vectors. Generically, however, any arbitrarily small tweak to U will
break the degeneracy.

2That is, to generate a new value for the jth principal component, one just draws uniformly
from the jth column in H. We will see more of this kind of thing later, when we consider
bootstrapping.

3Brian Whitman’s Eigenradio (eigenradio.media.mit.edu) would do something like this in
real time to a couple of radio stations. Occasionally it would even sound like human music. The
site is offline now, but see http://www.bagatellen.com/archives/interviews/000974.html

for an interview where Whitman tries to explain it to a music blog.
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2 The Truth about Factor Analysis

Recall the factor-analysis model:

X = Fw + ε

The factor-score matrix F is smaller than the data matrix X (n×k versus n×p),
but Fw has nearly the same correlations as the original features. If we want to
eliminate some dimensions while preserving correlations, then the factor scores
are a good summary of the data.

Many people also think of the factor model as a generative model, an account
of how the data were produced in the first place. Seen this way, it is also a
predictive model. Its prediction is that

X ∼ N (0,wT w + Ψ) (1)

Of course it might seem like it makes a more refined prediction,

X|F ∼ N (Fw,Ψ) (2)

but the problem is that there is no way to guess at or estimate F until after
we’ve seen X, at which point anyone can predict X perfectly. So the actual
forecast is given by Eq. 1.4

Now, without going through the trouble of factor analysis, one could always
just postulate that

X ∼ N (0, U) (3)

and estimate U ; the maximum likelihood estimate of it is the observed covariance
matrix. The closer our estimate Û is to U , the better our predictions. One way
to think of factor analysis is that it looks for the maximum likelihood estimate,
but constrained to matrices of the form wT w + Ψ.

On the plus side, the constrained estimate has a faster rate of convergence.
That is, both the constrained and unconstrained estimates are consistent and
will converge on their optimal, population values as we feed in more and more
data, but for the same amount of data the constrained estimate is probably
closer to its limiting value. In other words, the constrained estimate ŵT ŵ + Ψ̂
has less variance than the unconstrained estimate Û .

On the minus side, maybe the true, population U just can’t be written in the
form wT w + Ψ. Then we’re getting biased estimates of the covariance and the
bias will not go away, even with infinitely many samples. Using factor analysis
rather than just fitting a multivariate Gaussian means betting that either this
bias is really zero, or that, with the amount of data on hand, the reduction in
variance outweighs the bias.

4A subtlety is that we might get to see some but not all of X, and use that to predict the
rest. Say X = (X1, X2), and we see X1. Then we could, in principle, compute the conditional
distribution of the factors, p(F |X1), and use that to predict X2. Of course one could do the
same thing using the correlation matrix, factor model or no factor model.
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(I haven’t talked about estimated errors in the parameters of a factor model.
The easiest way to obtain these is through either the jack-knife method — leave
each observation out, re-estimate the model, and look at the distribution of re-
estimates around the full-data estimate — or the bootstrap method — randomly
re-sample the data, re-estimate, and again look at the distribution around the
full-data estimate. We’ll see much more about both of these methods after the
midterm, so just bear in mind that if you need to use factor analysis you can
do this.)

2.1 The Graphical Form of Factor Models

One can represent the factor model as a graph like Figure 1. The square nodes
stand for the features, which are observable, and the circles for the factors,
which are not directly observable. The numbers beside the arrows are the factor
loadings, taken from the matrix w. When the loading of a feature on a factor
is zero, draw no arrow. Thus Xb = −0.75F1 + 0.34F2 + εb. The correlations
between variables can be worked out from the arrows: Xa and Xb have only
the factor F1 in common, so their correlation is (0.87)(−0.75) = −0.65. On the
other hand, Xc and Xd have two factors in common, and so their correlation is
(0.13)(0.20) + (0.73)(0.10) = 0.099.

Xb and Xc are conditionally independent, given F2, because that is their only
common factor. On the other hand, F1 and F2 are conditionally dependent given
Xb, because knowing Xb tells us something about the value of −0.75F1+0.34F2,
and so about F1 and F2. We will see later that there is a whole set of rules
for deducing conditional independence relations from diagrams like this. This
is because factor models are a special case of the broader class of graphical
models, specifically a variety of linear Gaussian graphical model.

A natural impulse, when looking at something like Figure 1, is to reify the
factors and to treat the arrows causally: that is, to say that there really is
some variable corresponding to each factor, and that changing the value of that
variable will change the features. For instance, one might want to say that there
is a real, physical variable corresponding to the factor F1, and that increasing
this by one standard deviation will, on average, increase Xa by 0.87 standard
deviations, decrease Xb by 0.75 standard deviations, and do nothing to the other
features. Moreover, changing any of the other factors has no effect on Xa.

Sometimes all this is even right. How can we tell when it’s right?

2.2 The Rotation Problem Again

Consider the following matrix, call it R: cos 30 − sin 30 0
sin 30 cos 30 0

0 0 1


Applied to a three-dimensional vector, this rotates it thirty degrees counter-
clockwise around the vertical axis. If we apply R to the factor loading matrix
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Figure 1: Graphical model form of a factor model. Circles stand for the unob-
served factors, boxes for the observed features. Edges indicate non-zero entries
in the factor loading matrix.

of the model in the figure, we get the model in Figure 2. Now instead of Xa

being correlated with the other variables only through one factor, it’s correlated
through two factors, and Xd has incoming arrows from three factors.

Because the transformation is orthogonal, the new factors are still uncorre-
lated with each other, and the distribution of the observations is unchanged. In
particular, the fit of the new factor model to the data will be exactly as good
as the fit of the old model. If we try to take this causally, however, we come up
with a very different interpretation. The quaity of the fit to the data does not,
therefore, let us distinguish between these two models, and so these two stories
about the causal structure of the data.

The rotation problem does not rule out the idea that checking the fit of a
factor model would let us discover how many hidden causal variables there are.

2.3 Factors or Mixtures?

Suppose we have two distributions with probability densities f0(x) and f1(x).
Then we can define a new distribution which is a mixture of them, with density
fα(x) = (1− α)f0(x) + αf1(x), 0 ≤ α ≤ 1. The same idea works if we combine
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Figure 2: The model from Figure 1, after rotating the first two factors by 30
degrees around the third factor’s axis. The new factor loadings are rounded to
two decimal places.

more than two distributions, so long as the sum of the mixing weights sum
to one (as do α and 1− α). We will look more later at mixture models, which
provide a very flexible and useful way of representing complicated probability
distributions. They are also a probabilistic, predictive alternative to the kind
of clustering techniques we’ve seen before this: each distribution in the mixture
is basically a cluster, and the mixing weights are the probabilities of drawing a
new sample from the different clusters.

I bring up mixture models here because there is a very remarkable result:
any linear, Gaussian factor model with k factors is equivalent to some mixture
model with k+1 clusters, in the sense that the two models have the same means
and covariances (Bartholomew, 1987, pp. 36–38). Recall from Lecture 13 that
the likelihood of a factor model depends on the data only through the correlation
matrix. If the data really were generated by sampling from k + 1 clusters, then
a model with k factors can match the covariance matrix very well, and so get a
very high likelihood. This means it will, by the usual test, seem like a very good
fit. Needless to say, however, the causal interpretations of the mixture model
and the factor model are very different. The two may be distinguishable if the
clusters are well-separated (by looking to see whether the data are unimodal or
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not), but that’s not exactly guaranteed.
All of which suggests that factor analysis can’t really tell us whether we have

k continuous hidden causal variables, or one discrete hidden variable taking k+1
values.

2.4 The Thomson Sampling Model

We have been working with fewer factors than we have features. Suppose that’s
not true. Suppose that each of our features is actually a linear combination of
a lot of variables we don’t measure:

Xi = ηi +
q∑

j=1

AjTji = ηi + A · Ti (4)

where q � p. Suppose further that the latent variables Aj are totally inde-
pendent of one another, but they all have mean 0 and variance 1; and that the
noises ηi are independent of each other and of the Aj , with variance φi. What
then is the covariance between Xa and Xb? Well, because E [Xa] = E [Xb] = 0,
it will just be the expectation of the product of the features:

E [XaXb] = E [(ηa + A · Ta)(ηb + A · Tb)] (5)
= E [ηaηb] + E [ηaA · Tb] + E [ηbA · Ta] + E [(A · Ta)(A · Tb)] (6)

= 0 + 0 + 0 + E

 q∑
j=1

AjTja

  q∑
j′=1

Aj′Tjb

 (7)

= E

∑
j,j′

AjAj′TjaTj′b

 (8)

=
∑
j,j′

E [AjAj′TjaTj′b] (9)

=
∑
j,j′

E [AjAj′ ]E [TjaTj′b] (10)

=
q∑

j=1

E [TjaTjb] (11)

where to get the last line I use the fact that E [AjAj′ ] = 1 if j = j′ and = 0
otherwise. If the coefficients T are fixed, then the last expectation goes away
and we merely have the same kind of sum we’ve seen before, in the factor model.

Instead, however, let’s say that the coefficients T are themselves random
(but independent of the Aj and ηj). For each feature Xa, we fix a proportion
za between 0 and 1. We then Tja ∼ Bernoulli(za), with Tja ⊥ Tj′b unless j = j′

and a = b. Then
E [TjaTjb] = E [Tja]E [Tjb] = zazb
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and
E [XaXb] = qzazb

which is exactly what it should be in the one-factor model, according to what
we saw in Lecture 12.

Now, it doesn’t make a lot of sense to imagine that every time we make
an observation we change the coefficients T randomly. Instead, let’s suppose
that they are first generated randomly, giving values Tji, and then we generate
feature values according to Eq. 4. The covariance between Xa and Xb will be∑q

j=1 TjaTjb. But this is a sum of IID random values, so by the law of large
numbers as q gets large this will become very close to qzazb. Thus, for nearly
all choices of the coefficients, the feature covariance matrix should come very
close to satisfying the tetrad equations and looking like there’s a single general
factor.

In this model, each feature is a linear combination of a random sample of
a huge pool of completely independent features, plus some extra noise specific
to the feature.5 Precisely because of this, the features are correlated, and the
pattern of correlations is that of a factor model with one factor. The appearance
of a single common cause actually arises from the fact that the number of causes
is immense, and there is no particular pattern to their influence on the features.

The file thomson-model.R (on Blackboard) simulates the Thomson model.

> tm = rthomson(50,11,500,50)
> factanal(tm$data,1)

The first command generates data from n = 50 items with p = 11 features and
q = 500 latent variables. (The last argument controls the average size of the
specific variances φj .) The result of the factor analysis is of course variable, de-
pending on the random draws; my first attempt gave the proportion of variance
associated with the factor as 0.391, and the p-value as 0.527. Repeating the
simulation many times, one sees that the p-value is pretty close to uniformly
distributed, which is what it should be if the null hypothesis is true (Figure
3). For fixed n, the distribution becomes closer to uniform the larger we make
q. In other words, the goodness-of-fit test has little or no power against the
alternative of the Thomson model.

Modifying the Thomson model to look like multiple factors grows notation-
ally cumbersome; the basic idea however is to use multiple pools of independently-

5When Godfrey Thomson introduced this model in 1914, he used a slightly different pro-
cedure to generate the coefficient Tji. For each feature he drew a uniform integer between
1 and q, call it qi, and then sampled the integers from 1 to q without replacement until he
had qi random numbers; these were the values of j where Tji = 1. This is basically similar
to what I describe, setting zi = qi/q, but a bit harder to analyze in an elementary way. —
Thomson (1916), the original paper, includes what we would now call a simulation study of
the model, where Thomson stepped through the procedure to produce simulated data, calcu-
late the empirical correlation matrix of the features, and check the fit to the tetrad equations.
Not having a computer, Thomson generated the values of Tji with a deck of cards, and of the
Ai and ηi by rolling 5220 dice.
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> plot(ecdf(replicate(200,factanal(rthomson(50,11,500,50)$data,1)$PVAL)),
xlab="p value",ylab="Empirical CDF",
main="Sampling distribution of FA p-value under Thomson model",
sub="200 replicates of 50 subjects each")

> abline(0,1,lty=2)

Figure 3: Mimcry of the one-factor model by the Thomson model. The Thomson
model was simulated 200 times with the parameters given above; each time, the
simulated data was then fit to a factor model with one factor, and the p-value of
the goodness-of-fit test extracted. The plot shows the empirical cumulative dis-
tribution function of the p-values. If the null hypothesis were exactly true, then
p ∼ Unif(0, 1), and the theoretical CDF would be the diagonal line (dashed).
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sampled latent variables, and sum them:

Xi = ηi +
q1∑

j=1

AjTji +
q2∑

j=1

BjRji + . . .

where the Tji coefficients are independent of the Rji, and so forth.
It’s not feasible to estimate the Tji of the Thomson model in the same

way that we estimate factor loadings, because q > p. This is not the point of
considering the model, which is rather to make it clear that we actually learn
very little about where the data come from when we learn that a factor model
fits well. It could mean that the features arise from combining a small number of
factors, or on the contrary from combining a huge number of factors in a random
fashion. A lot of the time the latter is a more plausible-sounding story.6

For example, a common application of factor analysis is in marketing: you
survey consumers and ask them to rate a bunch of products on a range of
features, and then do factor analysis to find attributes which summarize the
features. That’s fine, but it may well be that each of the features is influenced
by lots of aspects of the product you don’t include in your survey, and the
correlations are really explained by different features being affected by many
of the same small aspects of the product. Similarly for psychological testing:
answering any question is really a pretty complicated process involving lots of
small processes and skills (of perception, several kinds of memory, problem-
solving, attention, etc.), which overlap partially from question to question.

6Thomson (1939) remains one of the most insightful books on factor analysis, though obvi-
ously there have been a lot of technical refinements since he wrote. It’s strongly recommended
for anyone who plans to make much use of factor analysis. While out of print, used copies are
reasonably plentiful and cheap.
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3 Advice

Principal components is a pretty good thing to try if you need or want to
do dimension reduction but aren’t sure what exactly to use. It’s got some
reasonable mathematical properties, can often be interpreted, and runs fast
(comparatively speaking).

Factor analysis does not offer any general advantages over PCA when it
comes to data reduction, except for preserving correlations. One or the other
of them may work better, depending on your data and what you want to do
with it. Factor analysis can also be used as a predictive model. This is possible
because it fits a distribution to the data, and not because it actually gets at the
underlying causal structure with any reliability or power.

In both cases, the dimensions found by PCA and FA may be real features of
the data, or they may just be more-or-less convenient fictions and summaries.
That they are real is a hypothesis which these methods can suggest but for which
they can provide only very weak evidence. This matters because ultimately we
do data mining to discover knowledge on which we can act. It’s one thing if our
action is just a prediction to help us adjust to the world, but it’s another if we
go out and try to change the world based on how we think the different parts
of it depend on each other. To do that well, we need to know what those parts
really are.
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