
Predicting Quantitative Features: Regression

36-350, Data Mining

6 October 2008

Reading: sections 6.1–6.3 and 11.1 in Principles of Data Min-
ing.

We’ve already looked at some examples of predictive modeling in the form
of classification and factor analysis, but now we’ll get into it more seriously,
and it will largely occupy us for the rest of the course. The place we’ll begin
is with predictive quantitative features, i.e., regression. The math here is not
so bad, and it connects more smoothly with your previous statistics courses;
having learned some lessons here we’ll come back to classification, and then go
to more complicated kinds of prediction.

1 Guessing the Value of a Random Variable

We have a quantitative, numerical feature, which we’ll imaginatively call Y .
We’ll suppose that it’s a random variable, and try to predict it by guessing a
single value for it. (Other kinds of predictions are possible — we might guess
whether Y will fall within certain limits, or the probability that it does so, or
even the whole probability distribution of Y . But some lessons we’ll learn here
will apply to these other kinds of predictions as well.) What is the best value
to guess? Or, more formally, what is the optimal point forecast for Y ?

To answer this question, we need to pick a function to be optimized, which
should measure how good the guesses are — or equivalent how bad they are,
how big an error is involved. A reasonable start point is the mean squared
error:

MSE(a) ≡ E
[
(Y − a)2

]
(1)

So we’d like to find the value r where MSE(a) is smallest.

MSE(a) = E
[
(Y − a)2

]
(2)

= (E [Y − a])2 + Var [Y − a] (3)

= (E [Y − a])2 + Var [Y] (4)

= (E [Y]− a)2 + Var [Y] (5)
dMSE

da
= 2 (E [Y]− a) + 0 (6)

1

2(E [Y]− r) = 0 (7)
r = E [Y] (8)

So, if we gauge the quality of our prediction by mean-squared error, the best
prediction to make is the expected value.

Exercise: Suppose we use the mean absolute error instead of the
mean squared error:

MAE(a) = E [|Y − a|]

Is this also minimized by taking a = E [Y]? If not, what value r̃ minimizes

the MAE? Should we use MSE or MAE to measure error?

1.1 Estimating the Expected Value

Of course, to make the prediction E [Y] we would have to know the expected
value of Y . Typically, we do not. However, if we have sampled values, y1, y2, . . . yn,
we can estimate the expectation from the sample mean:

r̂ ≡ 1
n

n∑
i=1

yi (9)

If the samples are IID, then the law of large numbers tells us that

r̂ → E [Y] = r (10)

and the central limit theorem tells us something about how fast the convergence
is (namely the squared error will typically be about Var [Y] /n).

Of course the assumption that the yi come from IID samples is a strong
one, but we can assert pretty much the same thing if they’re just uncorrelated
with a common expected value. Even if they are correlated, but the correlations
decay fast enough, all that changes is the rate of convergence. So “sit, wait, and
average” is a pretty reliable way of estimating the expectation value.

2 The Regression Function

Of course, it’s not very useful to predict just one number for a feature. Typically,
we have lots of features in our data, and we believe that there is some relation-
ship between them. For example, suppose that we have data on two featured,
X and Y , which might look like Figure 1. The feature Y is what we are trying
to predict, a.k.a. the dependent variable or output or response, and X is
the predictor or independent variable or covariate or input. Y might be
something like the profitability of a customer and X their credit rating, or, if
you want a less mercenary example, Y could be some measure of improvement
in blood cholesterol and X the dose taken of a drug. Typically we won’t have
just one input feature X but rather many of them, but that gets harder to draw
and doesn’t change the points of principle.

2

Figure 2 shows the same data as Figure 1, only with the sample mean added
on. This clearly tells us something about the data, but also it seems like we
should be able to do better — to reduce the average error — by using X, rather
than by ignoring it.

Let’s say that the we want our prediction to be a function of X, namely
f(X). What should that function be, if we still use mean squared error? We
can work this out by using the law of total expectation, a.k.a. smoothing, a.k.a.
the fact that E [U] = E [E [U |V]] for any random variables U and V .

MSE(f(X)) = E
[
(Y − f(X))2

]
(11)

= E
[
E

[
(Y − f(X))2|X

]]
(12)

= E
[
Var [Y |X] + (E [Y − f(X)|X])2

]
(13)

When we want to minimize this, the first term inside the expectation doesn’t
depend on our prediction, and the second term looks just like our previous
optimization only with all expectations conditional on X, so for our optimal
function r(x) we get

r(x) = E [Y |X = x] (14)

In other words, the (mean-squared) optimal conditional prediction is just the
conditional expected value. The function r(x) is called the regression func-
tion. This is what we would like to know when we want to predict Y .

2.1 Some Disclaimers

It’s important to be clear on what is and is not being assumed here. Talking
about X as the “independent variable” and Y as the “dependent” one suggests
a causal model, which we might write

Y ← r(X) + ε (15)

where the direction of the arrow, ←, indicates the flow of cause and effect, and
ε is some noise variable. If the gods of inference are very, very kind, then ε
would have a fixed distribution, independent of X, and we could without loss
of generality take it to have mean zero. (“Without loss of generality” because
if it has a non-zero mean, we can incorporate that into r(X) as an additive
constant.) This is the kind of thing we saw with the factor model. However,
no such assumption is required to get Eq. 14. It works when predicting effects
from causes, or the other way around when predicting (or “retrodicting”) causes
from effects, or indeed when there is no causal relationship whatsoever between
X and Y . It is always true that

Y |X = r(X) + η(X)

where η(X) is a noise variable with mean zero, but as the notation indicates
the distribution of the noise generally depends on X.

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

plot(all.x,all.y,xlab="x",ylab="y")
axis(1,at=all.x,labels=FALSE,col="grey")
axis(2,at=all.y,labels=FALSE,col="grey")

Figure 1: Scatterplot of the example data. (These are made up.) The axis
commands add horizontal and vertical ticks to the axes to mark the location of
the data (in grey so they’re less strong than the main tick-marks). This isn’t
necessary but is often helpful. The data are in the example.dat file.

4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

Figure 2: Data from Figure 1, with a horizontal line showing the sample mean
of Y .

5

It’s also important to be clear that when we find the regression function
is a constant, r(x) = r0 for all x, that this does not mean that X and Y are
independent. If they are independent, then the regression function is a constant,
but turning this around is the logical fallacy of “affirming the consequent”.1

3 Estimating the Regression Function

We want to find the regression function r(x) = E [Y |X = x]. suppose that we
have a big set of pairs (x1, y1), (x2, y2), . . . (xn, yn). Then this is a supervised
learning problem — we know the label (value of Y) for each of our n train-
ing points. How can we estimate the regression function from these training
examples?

If X takes on only a finite set of values, then a simple strategy is to use the
conditional sample means:

r̂(x) =
1

{i : xi = x}
∑

i:xi=x

yi (16)

By the same kind of law-of-large-numbers reasoning, we can be confident that
r̂(x)→ E [Y |X = x].

Unfortunately, this only works if X has only a finite set of values. If X
is continuous, then in general the probability of our getting a sample at any
particular value is zero, is the probability of getting multiple samples at exactly
the same value of x. This is a basic issue with estimating any kind of function
from data — the function will always be undersampled, and we need to fill
in between the values we see. We also need to somehow take into account the
fact that each yi is a sample from the conditional distribution of Y |X = xi, and
so is not generally equal to E [Y |X = xi]. So any kind of function estimation is
going to involve interpolation, extrapolation, and smoothing.

Different methods of estimating the regression function — different regres-
sion methods, for short — involve different choices about how we interpolate,
extrapolate and smooth. This involves our making a choice about how to ap-
proximate r(x) by a limited class of functions which we know (or at least hope)
we can estimate. There is no guarantee that our choice leads to a good approx-
imation in the case at hand, though it is sometimes possible to say that the
approximation error will shrink as we get more and more data. (Remember our
discussion of bias and variance last lecture.)

For example, we could decide to approximate r(x) by a constant r0. The
implicit smoothing here is very strong, but sometimes appropriate. For instance,
it’s appropriate when r(x) really is a constant; then trying to estimate any
additional structure in the regression function is just so much wasted effort.
Alternate, if r(x) is nearly constant, we may still be better off approximating it

1As in combining the fact that all human beings are featherless bipeds, and the observation
that a cooked turkey is a featherless biped, to conclude that cooked turkeys are human beings.
An econometrician stops there; an econometrician who wants to be famous writes a best-selling
book about how this proves that Thanksgiving is really about cannibalism.

6

as one. For instance, suppose the true r(x) = r0 + asin(νx), where a � 1 and
ν � 1 (Figure 3 shows an example). With limited data, we can actually get
better predictions by estimating a constant regression function than one with
the correct functional form.

3.1 Ordinary Least Squares Linear Regression as Smooth-
ing

Let’s revisit ordinary least-squares linear regression from this point of view.
Let’s assume that the independent variable X is one-dimensional, and that both
X and Y are centered (i.e. have mean zero) — neither of these assumptions is
really necessary, but they reduce the book-keeping.

We are making the choice to approximate r(x) by α + βx, and ask for the
best values a, b of those constants. These will be the ones which minimize the
mean-squared error.

MSE(α, β) = E
[
(Y − α− βX)2

]
(17)

= E
[
(Y − α− βX)2|X

]
(18)

= E
[
Var [Y |X] + (E [Y − α− βX|X])2

]
(19)

= E [Var [Y |X]] + E
[
(E [Y − α− βX|X])2

]
(20)

The first term doesn’t depend on α or β, so we can drop it for purposes of
optimization. Taking derivatives, and then brining them inside the expectations,

∂MSE

∂α
= E [2(Y − α− βX)(−1)] (21)

E [Y − a− bX] = 0 (22)
a = E [Y]− bE [X] = 0 (23)

using the fact that X and Y are centered; and,

∂MSE

∂β
= E [2(Y − α− βX)(−X)] (24)

E [XY]− bE
[
X2

]
= 0 (25)

b =
Cov [X, Y]

Var [X]
(26)

again using the centering of X and Y . That is, the mean-squared optimal linear
prediction is

r(x) = x
Cov [X, Y]

Var [X]
(27)

Now, if we try to estimate this from data, there are two approaches. One
is to replace the true population values of the covariance and the variance with

7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

ugly.func = function(x) {1 + 0.01*sin(100*x)}
r = runif(100)
r.y = ugly.func(r) + rnorm(length(r),0,0.5)
plot(r,r.y,xlab="x",ylab="y")
curve(ugly.func,add=TRUE)
abline(h=mean(r.y),col="red")
sine.fit = lm(r.y ~ 1+ sin(100*r))
curve(sine.fit$coefficients[1]+sine.fit$coefficients[2]*sin(100*x),

col="blue",add=TRUE)

Figure 3: A rapidly-varying but nearly-constant regression function; Y = 1 +
0.01 sin 100x + ε, with ε ∼ N (0, 0.1). (The x values are uniformly distributed
between 0 and 1.) Red: constant line at the sample mean. Blue: estimated
function of the same form as the true regression function, i.e., a + b sin 100x.
With enough data, it’s better to estimate the true form of the function, but with
limited data the constant may actually generalize better — the bias of using
the wrong functional form is smaller than the additional variance from the extra
degrees of freedom. In this case, the RMS error of the constant on new data is
about 0.50, while that of the estimated sine function is 0.51 — in other words
the extra predictive power of estimating the correct function is slightly negative!

8

their sample values, respectively

1
n

∑
i

yixi

and
1
n

∑
i

x2
i

(again, assuming centering). The other is to minimize the residual sum of
squares,

RSS(α, β) ≡
∑

i

(yi − α− βxi)
2 (28)

You may or may not find it surprising that both approaches lead to the same
answer:

â = 0 (29)

b̂ =
∑

i yixi∑
i x2

i

(30)

Provided that Var [X] > 0, this will converge with IID samples, so we have a
consistent estimator.2

Exercise: We derived Eqs. 29 and 30 by minimizing Eq. 28 in
class. Can you repeat the derivation without looking at your notes?

We are now in a position to see how the least-squares linear regression model
is really a smoothing of the data. Let’s write the estimated regression function
explicitly in terms of the training data points.

r̂(x) = b̂x (31)

= x

∑
i yixi∑
i x2

i

(32)

=
∑

i

yi
xi∑
j x2

j

x (33)

=
∑

i

yi
xi

ns2
X

x (34)

where s2
X is the sample variance of X. In words, our prediction is a weighted

average of the observed values yi of the dependent variable, where the weights
are proportional to how far xi is from the center, relative to the variance, and
proportional to the magnitude of x. If xi is on the same side of the center as

2Eq. 29 may look funny, but remember that we’re assuming X and Y have been centered.
Centering doesn’t change the slope of the least-squares line but does change the intercept; if

we go back to the un-centered variables the intercept becomes Y − b̂X, where the bar denotes
the sample mean.

9

x, it gets a positive weight, and if it’s on the opposite side it gets a negative
weight.

Figure 4 shows the data from Figure 1 with the least-squares regression line
added. It will not escape your notice that this is very, very slightly different from
the constant regression function; the coefficient on X is 0.004438. Visually, the
problem is that there should be a positive slope in the left-hand half of the data,
and a negative slope in the right, but the slopes are the densities are balanced
so that the best single slope is zero.3

Mathematically, the problem arises from the somewhat peculiar way in which
least-squares linear regression smoothes the data. As I said, the weight of a data
point depends on how far it is from the center of the data, not how far it is from
the point at which we are trying to predict. This works when r(x) really is a
straight line, but otherwise — e.g., here — it’s a recipe for trouble. However, it
does suggest that if we could somehow just tweak the way we smooth the data,
we could do better than linear regression.

4 Linear Smoothers

The sample mean and the linear regression line are both special cases of linear
smoothers, which are estimates of the regression function with the following
form:

r̂(x) =
∑

i

yiŵ(xi, x) (35)

The sample mean is the special case where widehatw(xi, x) = 1/n, regardless
of what xi and x are.

Ordinary linear regression is the special case where ŵ(xi, x) = (xi/ns2
X)x.

Both of these, as remarked, ignore how far xi is from x.

4.1 k-Nearest-Neighbor Regression

At the other extreme, we could do nearest-neighbor regression:

ŵ(xi, x) =
{

1 xi nearest neighbor of x
0 otherwise (36)

This is very sensitive to the distance between xi and x. If r(x) does not change
too rapidly, and X is pretty thoroughly sampled, then the nearest neighbor of
x among the xi is probably close to x, so that r(xi) is probably close to r(x).
However, yi = r(xi)+noise, so nearest-neighbor regression will include the noise
into its prediction. We might instead do k-nearest neighbor regression,

ŵ(xi, x) =
{

1/k xi one of the k nearest neighbors of x
0 otherwise (37)

3The standard test of whether this coefficient is zero is about as far from rejecting the null
hypothesis as you will ever see, p = 0.965. You should remember this the next time you look
at regression output.

10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

abline(h=mean(all.y),lty=2)
fit.all = lm(all.y~all.x)
abline(a=fit.all$coefficients[1],b=fit.all$coefficients[2],col="blue")

Figure 4: Data from Figure 1, with a horizontal line at the mean (dotted) and
the ordinary least squares regression line (solid). If you zoom in online you will
see that there really are two lines there.

11

Again, with enough samples all the k nearest neighbors of x are probably close
to x, so their regression functions there are going to be close to the regression
function at x. But because we average their values of yi, the noise terms should
tend to cancel each other out. As we increase k, we get smoother functions —
in the limit k = n and we just get back the constant. Figure 5 illustrates this
for our running example data.4

To use k-nearest-neighbors regression, we need to pick k somehow. This
means we need to decide how much smoothing to do, and this is not trivial. We
will return to this point.

Because k-nearest-neighbors averages over only a fixed number of neighbors,
each of which is a noisy sample, it always has some noise in its prediction, and
is generally not consistent. This may not matter very much with moderately-
large data (especially once we have a good way of picking k). However, it is
sometimes useful to let k systematically grow with n, but not too fast, so as to
avoid just doing a global average; say k ∝

√
n. Such schemes can be consistent.

4.2 Kernel Smoothers

Changing k in a k-nearest-neighbors regression lets us change how much smooth-
ing we’re doing on our data, but it’s a bit awkward to express this in terms of
a number of data points. It feels like it would be more natural to talk about a
range in the independent variable over which we smooth or average. Another
problem with k-NN regression is that each testing point is predicted using in-
formation from only a few of the training data points, unlike linear regression or
the sample mean, which always uses all the training data. If we could somehow
use all the training data, but in a location-sensitive way, that would be nice.

There are several ways to do this, as we’ll see, but a particularly useful one is
to use a kernel smoother, a.k.a. kernel regression or Nadaraya-Watson
regression. To begin with, we need to pick a kernel function5 K(xi, x) which
satisfies the following properties:

1. K(xi, x) ≥ 0

2. K(xi, x) depends only on the distance xi−x, not the individual arguments

3.
∫

xK(0, x)dx = 0

4. 0 <
∫

x2K(0, x)dx <∞

These conditions together (especially the last one) imply that K(xi, x) → 0
as |xi − x| → ∞. Two examples of such functions are the density of the

4The code uses the k-nearest neighbor function provided by the package knnflex (available
from CRAN). This requires one to pre-compute a matrix of the distances between all the points
of interest, i.e., training data and testing data (using knn.dist); the knn.predict function
then needs to be told which rows of that matrix come from training data and which from
testing data. See help(knnflex.predict) for more, including examples.

5There are many other mathematical objects which are also called “kernels”. Some of
these meanings are related, but not all of them. (Cf. “normal”.)

12

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

library(knnflex)

all.dist = knn.dist(c(all.x,seq(from=0,to=1,length.out=100)))

all.nn1.predict = knn.predict(1:110,111:210,all.y,all.dist,k=1)

abline(h=mean(all.y),lty=2)

lines(seq(from=0,to=1,length.out=100),all.nn1.predict,col="blue")

all.nn3.predict = knn.predict(1:110,111:210,all.y,all.dist,k=3)

lines(seq(from=0,to=1,length.out=100),all.nn3.predict,col="red")

all.nn5.predict = knn.predict(1:110,111:210,all.y,all.dist,k=5)

lines(seq(from=0,to=1,length.out=100),all.nn5.predict,col="green")

all.nn20.predict = knn.predict(1:110,111:210,all.y,all.dist,k=20)

lines(seq(from=0,to=1,length.out=100),all.nn20.predict,col="purple")

Figure 5: Data points from Figure 1 with horizontal dashed line at the mean
and the k-nearest-neighbor regression curves for k = 1 (blue), k = 3 (red),
k = 5 (green) and k = 20 (purple). Note how increasing k smoothes out the
regression line, and pulls it back towards the mean. (k = 100 would give us
back the dashed horizontal line.)

13

Unif(−h/2, h/2) distribution, and the density of the standard GaussianN (0,
√

h)
distribution. Here h can be any positive number, and is called the bandwidth.

The Nadaraya-Watson estimate of the regression function is

r̂(x) =
∑

i

yi
K(xi, x)∑
j K(xj , x)

(38)

i.e., in terms of Eq. 35,

ŵ(xi, x) =
K(xi, x)∑
j K(xj , x)

(39)

(Notice that here, as in k-NN regression, the sum of the weights is always 1.
Why?)

What does this achieve? Well, K(xi, x) is large if xi is close to x, so this
will place a lot of weight on the training data points close to the point where
we are trying to predict. More distant training points will have smaller weights,
falling off towards zero. If we try to predict at a point x which is very far from
any of the training data points, we will about the same very small number for
all the K(xi, x), and so ŵ(xi, x) ≈ 1/n. That is, far from the training data our
prediction will tend towards the sample mean, rather than going off to ±∞, as
linear regression’s predictions do. (This assumes that we’re using a kernel like
the Gaussian, which never quite goes to zero, unlike the box kernel.) Whether
this is good or bad of course depends on the true r(x) — and how often we have
to predict what will happen very far from the training data.

Figure 6 shows our running example data, together with kernel regression
estimates formed by combining the uniform-density, or box, and Gaussian ker-
nels with different bandwidths. The box kernel simply takes a region of width
h around the point x and averages the training data points it finds there. The
Gaussian kernel gives reasonably large weights to points within h of x, smaller
ones to points within 2h, tiny ones to points within 3h, and so on, shrinking
like e−(x−xi)

2/2h. As promised, the bandwidth h controls the degree of smooth-
ing. As h → ∞, we revert to taking the global mean. As h → 0, we tend to
get spikier functions — with the Gaussian kernel at least it tends towards the
nearest-neighbor regression. (Exercise: Why is that?)

If we want to use kernel regression, we need to choose both which kernel to
use, and the bandwidth to use with it. Experience, like Figure 6, suggests that
the bandwidth usually matters a lot more than the kernel. This puts us back to
roughly where we were with k-NN regression, needing to control the degree of
smoothing, without knowing how smooth r(x) really is. Similarly again, with
a fixed bandwidth h, kernel regression is generally not consistent. However, if
h→ 0 as n→∞, but doesn’t shrink too fast, then we can get consistency.

Next time, we’ll look more at linear regression and some extensions, and
then come back to nearest-neighbor and kernel regression, and say something
about how to handle things like the blob of data points around (0.9, 0.9) in the
scatter-plot.

14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

plot(all.x,all.y,xlab="x",ylab="y")
axis(1,at=all.x,labels=FALSE)
axis(2,at=all.y,labels=FALSE)
lines(ksmooth(all.x, all.y, "normal", bandwidth=2),col="blue",lty=2)
lines(ksmooth(all.x, all.y, "normal", bandwidth=1),col="red",lty=2)
lines(ksmooth(all.x, all.y, "normal", bandwidth=0.1),col="green",lty=2)
lines(ksmooth(all.x, all.y, "box", bandwidth=2),col="blue")
lines(ksmooth(all.x, all.y, "box", bandwidth=1),col="red")
lines(ksmooth(all.x, all.y, "box", bandwidth=0.1),col="green")

Figure 6: Data from Figure 1 together with kernel regression lines. Solid colored
lines are box-kernel estimates, dashed colored lines Gaussian-kernel estimates.
Blue, h = 2; red, h = 1; green, h = 0.5; purple, h = 0.1 (per the definition of
bandwidth in the ksmooth function). Note the abrupt jump around x = 0.75 in
the box-kernel/h = 0.1 (solid purple) line — with a small bandwidth the box
kernel is unable to interpolate smoothly across the break in the training data,
while the Gaussian kernel can.

15

