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We need to say some more about how linear regression, and especially about
how it really works and how it can fail. Linear regression is important because

1. it’s a fairly straightforward technique which often works reasonably well;

2. it’s a simple foundation for some more sophisticated techniques;

3. it’s a standard method so people use it to communicate; and

4. it’s a standard method so people have come to confuse it with prediction
and even with causal inference as such.

We need to go over (1)–(3), and provide prophylaxis against (4).
There are many excellent books available about linear regression. Faraway

(2004) is practical and has a lot of useful R stuff. Berk (2004) omits technical
details, but is superb on the high-level picture, and especially on what must be
assumed in order to do certain things with regression, and what cannot be done
under any assumption.

1 Optimal Linear Prediction

We have a response variable Y and a p-dimensional vector of predictor variables
or features ~X. To simplify the book-keeping, we’ll take these to be centered —
we can always un-center them later. We would like to predict Y using ~X. We
saw last time that the best predictor we could use, at least in a mean-squared
sense, is the conditional expectation,

r(~x) = E
[
Y | ~X = ~x

]
Let’s approximate r(~x) by a linear function of ~x, say ~x · β. This is not an

assumption about the world, but rather a decision on our part; a choice, not a
hypothesis. This decision can be good — the approximation can be accurate —
even if the linear hypothesis is wrong.

One reason to think it’s not a crazy decision is that we may hope r is a
smooth function. If it is, then we can Taylor expand it about our favorite point,
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say ~u:

r(~x) = r(~u) +
p∑

i=1

(
∂r

∂xi

∣∣∣∣
~u

)
(xi − ui) + O(‖vecx− ~u‖2) (1)

or, in the more compact vector calculus notation,

r(~x) = r(~u) + (~x− ~u) · ∇r(~u) + O(‖vecx− ~u‖2) (2)

If we only look at points ~x which are close to ~u, then the remainder terms
O(‖vecx− ~u‖2) are small, and a linear approximation is a good one.

Of course there are lots of linear functions so we need to pick one, and we
may as well do that by minimizing mean-squared error again:

MSE(β) = E
[(

Y − ~X · β
)2

]
(3)

Going through the optimization is parallel to the one-dimensional case (see last
handout), with the conclusion that the optimal β is

β = V−1Cov
[

~X, Y
]

(4)

where V is the covariance matrix of ~X, i.e., Vij = Cov [Xi, Xj ], and Cov
[

~X, Y
]

is the vector of covariances between the predictor variables and Y , i.e. Cov
[

~X, Y
]

i
=

Cov [Xi, Y ].
Notice: this depends on the marginal distribution of ~X (through the covari-

ance matrix V). If that shifts, the optimal coefficients β will shift, unless the
real regression function is linear.

Exercise: Convince yourself that if the real regression function is linear,
β does not depend on the marginal distribution of X. You may want to start
with the case of one independent variable.

1.1 Collinearity

The formula β = V−1Cov
[

~X, Y
]

makes no sense if V has no inverse. This will
happen if, and only if, the predictor variables are linearly dependent on each
other — if one of the predictors is really a linear combination of the others.
Then (think back to what we did with factor analysis) the covariance matrix is
of less than full rank (i.e., rank deficient) and it doesn’t have an inverse.

So much for the algebra; what does that mean statistically? Let’s take an
easy case where one of the predictors is just a multiple of the others — say
you’ve included people’s weight in pounds (X1) and mass in kilograms (X2), so
X1 = 2.2X2. Then if we try to predict Y , we’d have

Ŷ = β1X1 + β2X2 + β3X3 + . . . + βpXp

= 0X1 + (2.2β1 + β2)X2 +
p∑

i=3

βiXi
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= (β1 + β2/2.2)X1 + 0X2 +
p∑

i=3

βiXi

= −2200X1 + (1000 + β1 + β2)X2 +
p∑

i=3

βiXi

In other words, because there’s a linear relationship between X1 and X2, we
make the coefficient for X1 whatever we like, provided we make a corresponding
adjustment to the coefficient for X2, and it has no effect at all on our prediction.
So rather than having one optimal linear predictor, we have infinitely many of
them.

There are two ways of dealing with collinearity. One is to get a different
data set where the predictor variables are no longer collinear. The other is to
identify one of the collinear variables (it doesn’t matter which) and drop it from
the data set. This can get complicated; PCA can be helpful here.

1.2 Estimating the Optimal Linear Predictor

To actually estimate β, we need to make some probabilistic assumptions about
where the data comes from. The minimal one we can get away with is that
observations ( ~Xi, Yi) are independent, with unchanging covariances. Then if we
look at the sample covariances, they will converge on the true covariances:

1
n
XT Y → Cov

[
~X, Y

]
1
n
XT X → V

where as before X is the data-frame matrix with one row for each data point
and one column for each feature, and similarly for Y.

So, by continuity,
β̂ = (XT X)

−1
XT Y → β (5)

and we have a consistent estimator.
On the other hand, we could start with the residual sum of squares

RSS(β) ≡
n∑

i=1

(yi − ~xi · β)2 (6)

and try to minimize it. The minimizer is the same β̂ we got by plugging in the
sample covariances.

(One can also show that the least-squares estimate is the linear prediction
with the minimax prediction risk. That is, its worst-case performance, when
everything goes wrong and the data are horrible, will be better than any other
linear method. This is some comfort, especially if you have a gloomy and pes-
simistic view of data, but other methods of estimation may work better in
less-than-worst-case scenarios.)
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2 Shifting Distributions, Omitted Variables, and
Transformations

2.1 Changing Slopes

I said earlier that the best β in linear regression will depend on the distribution
of the predictor variable, unless the conditional mean is exactly linear. Here is
an illustration. For simplicity, let’s say that p = 1, so there’s only one predictor
variable. I generated data from Y =

√
X + ε, with ε ∼ N (0, 0.052) (i.e. the

standard deviation of the noise was 0.05).
Figure 1 shows the regression lines inferred from samples with three different

distributions of X: the black points are X ∼ Unif(0, 1), the blue are X ∼
N (0.5, 0.01) and the red X ∼ Unif(2, 3). The regression lines are shown as
colored solid lines; those from the blue and the black data are quite similar —
and similarly wrong. The dashed black line is the regression line fitted to the
complete data set. Finally, the light grey curve is the true regression function,
r(x) =

√
x.

2.1.1 R2: Distraction or Nuisance?

This little set-up, by the way, illustrates that R2 is not a stable property of the
distribution either. For the black points, R2 = 0.92; for the blue, R2 = 0.70;
and for the red, R2 = 0.77; and for the complete data, 0.96. Other sets of xi

values would give other values for R2. Note that while the global linear fit isn’t
even a good approximation anywhere in particular, it has the highest R2.

This kind of perversity can happen even in a completely linear set-up. Sup-
pose now that Y = aX + ε, and we happen to know a exactly. The variance
of Y will be a2Var [X] + Var [ε]. The amount of variance our regression “ex-
plains” — really, the variance of our predictions —- will be a2Var [X]. So
R2 = a2Var[X]

a2Var[X]+Var[ε] . This goes to zero as Var [X] → 0 and it goes to 1 as
Var [X] →∞. It thus has little to do with the quality of the fit, and a lot to do
with how spread out the independent variable is.

Notice also how easy it is to get a very high R2 even when the true model
is not linear!

2.2 Omitted Variables and Shifting Distributions

That the optimal regression coefficients can change with the distribution of the
predictor features is annoying, but one could after all notice that the distribution
has shifted, and so be cautious about relying on the old regression. More subtle
is that the regression coefficients can depend on variables which you do not
measure, and those can shift without your noticing anything.

Mathematically, the issue is that

E
[
Y | ~X

]
= E

[
E

[
Y |Z, ~X

]
| ~X

]
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Figure 1: Behavior of the conditioning distribution Y |X ∼ N (
√

X, 0.052) with
different distributions of X. Black circles: X is uniformly distributed in the
unit interval. Blue triangles: Gaussian with mean 0.5 and standard deviation
0.1. Red squares: uniform between 2 and 3. Axis tick-marks show the location
of the actual sample points. Solid colored lines show the three regression lines
obtained by fitting to the three different data sets; the dashed line is from fitting
to all three. The grey curve is the true regression function.
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Now, if Y is independent of Z given ~X, then the extra conditioning in the inner
expectation does nothing and changing Z doesn’t alter our predictions. But in
general there will be plenty of variables Z which we don’t measure (so they’re
not included in ~X) but which have some non-redundant information about the
response (so that Y depends on Z even conditional on ~X). If the distribution of
Z given ~X changes, then the optimal regression of Y on ~X should change too.

Here’s an example. X and Z are bothN (0, 1), but with a positive correlation
of 0.1. In reality, Y ∼ N (X + Z, 0.01). Figure 2 shows a scatterplot of all three
variables together (n = 100).

Now I change the correlation between X and Z to −0.1. This leaves both
marginal distributions alone, and is barely detectable by eye (Figure 3).1

Figure 4 shows just the X and Y values from the two data sets, in black
for the points with a positive correlation between X and Z, and in blue when
the correlation is negative. Looking by eye at the points and at the axis tick-
marks, one sees that, as promised, there is very little change in the marginal
distribution of either variable. Furthermore, the correlation between X and Y
doesn’t change much, going only from 0.75 to 0.74. On the other hand, the
regression lines are noticeably different. When Cov [X, Z] = 0.1, the slope of
the regression line is 1.2 — high values for X tend to indicate high values for
Z, which also increases Y . When Cov [X, Z] = −0.1, the slope of the regression
line is 0.80, because now extreme values of X are signs that Z is at the opposite
extreme, bringing Y closer back to its mean. But, to repeat, the difference here
is due to a change in the correlation between X and Z, not how those variables
themselves relate to Y . If I regress Y on X and Z, I get β̂ = (0.99, 0.99) in the
first case and β̂ = (0.99, 0.99) in the second.

We’ll return to this issue of omitted variables when we look at causal infer-
ence at the end of the course.

2.3 Transformation

Let’s look at a simple non-linear example, Y |X ∼ N (log X, 1). The problem
with smoothing data from this source on to a straight line is that the true
regression curve isn’t very straight, E [Y |X = x] = log x. (Figure 5.) This
suggests replacing the variables we have with ones where the relationship is
linear, and then undoing the transformation to get back to what we actually
measure and care about.

We have two choices: we can transform the response Y , or the predictor
X. Here transforming the response would mean regressing expY on X, and
transforming the predictor would mean regressing Y on log X. Both kinds of
transformations can be worth trying, but transforming the predictors is, in my
experience, often a better bet, for three reasons.

1. Mathematically, E [f(Y )] 6= f(E [Y ]). A mean-squared optimal prediction
of f(Y ) is not necessarily close to the transformation of an optimal predic-

1I’m sure there’s a way to get R to combine the scatterplots, but it’s beyond me.
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Figure 2: Scatter-plot of response variable Y (vertical axis) and two variables
which influence it (horizontal axes): X, which is included in the regression, and
Z, which is omitted. X and Z have a correlation of +0.1. (Figure created using
the cloud command in the package lattice.)

7



X
Z

Y

Figure 3: As in Figure 2, but shifting so that the correlation between X and Z
is now −0.1, though the marginal distributions, and the distribution of Y given
X and Z, are unchanged.
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Figure 4: Joint distribution of X and Y from Figure 2 (black, with a positive cor-
relation between X and Z) and from Figure 3 (blue, with a negative correlation
between X and Z). Tick-marks on the axes show the marginal distributions,
which are manifestly little-changed.
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Figure 5: Sample of data for Y |X ∼ N (log X, 1). (Here X ∼ Unif(0, 1), and
all logs are natural logs.) The true, logarithmic regression curve is shown in
grey (because it’s not really observable), and the linear regression fit is shown
in black.
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tion of Y . And Y is, presumably, what we really want to predict. (Here,
however, it works out.)

2. Imagine that Y =
√

X + log Z. There’s not going to be any particularly
nice transformation of Y that makes everything linear; though there will
be transformations of the features.

3. This generalizes to more complicated models with features built from mul-
tiple covariates.

Figure 6 shows the effect of these transformations. Here transforming the
predictor does, indeed, work out more nicely; but of course I chose the example
so that it does so. Exercise: Which kind of transformation is superior for the
model where Y |X ∼ N (

√
X, 1)?

To expand on that last point, imagine a model like so:

r(~x) =
q∑

j=1

cjfj(~x) (7)

If we know the functions fj , we can estimate the optimal values of the coeffi-
cients cj by least squares — this is a regression of the response on new features,
which happen to be defined in terms of the old ones. Because the parameters
are outside the functions, that part of the estimation works just like linear re-
gression. Models embraced under the heading of Eq. 7 include linear regressions
with interactions between the independent variables (set fj = xixk, for vari-
ous combinations of i and k), and polynomial regression. There is however
nothing magical about using products and powers of the independent variables;
we could regress Y on sinx, sin 2x, sin 3x, etc.

To apply models like Eq. 7, we can either (a) fix the functions fj in advance,
based on guesses about what should be good features for this problem; (b)
fix the functions in advance by always using some “library” of mathematically
convenient functions, like polynomials or trigonometric functions; or (c) try to
find good functions from the data. Option (c) takes us beyond the realm of
linear regression as such.

3 Adding Probabilistic Assumptions

The usual treatment of linear regression adds many more probabilistic assump-
tions. Specifically, the assumption is that

Y | ~X ∼ N ( ~X · β, σ2) (8)

with all Y values being independent conditional on their ~X values. So now we
are assuming that the regression function is exactly linear; we are assuming that
at each ~X the scatter of Y around the regression function is Gaussian; we are
assuming that the variance of this scatter is constant; and we are assuming that
there is no dependence between this scatter and anything else.
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Figure 6: Transforming the predictor (left column) and the response (right col-
umn) in the data from Figure 5, displayed in both the transformed coordinates
(top row) and the original coordinates (middle row). The bottom row super-
imposes the two estimated curves (transformed X in black, transformed Y in
blue). The true regression curve is always shown in grey.12



None of these assumptions was needed in deriving the optimal linear predic-
tor. None of them is so mild that it should go without comment or without at
least some attempt at testing.

Leaving that aside just for the moment, why make those assumptions? As
you know from your earlier classes, they let us write down the likelihood of the
observed responses y1, y2, . . . yn (conditional on the covariates ~x1, . . . ~xn), and
then estimate β and σ2 by maximizing this likelihood. As you also know, the
maximum likelihood estimate of β is exactly the same as the β obtained by
minimizing the residual sum of squares. This coincidence would not hold in
other models, with non-Gaussian noise.

We saw earlier that β̂ is consistent under comparatively weak assumptions
— that it converges to the optimal coefficients. But then there might, possibly,
still be other estimators are also consistent, but which converge faster. If we
make the extra statistical assumptions, so that β̂ is also the maximum likelihood
estimate, we can lay that worry to rest. The MLE is generically (and certainly
here!) asymptotically efficient, meaning that it converges as fast as any other
consistent estimator, at least in the long run. So we are not, so to speak, wasting
any of our data by using the MLE.

A further advantage of the MLE is that, in large samples, it has a Gaussian
distribution around the true parameter values. This lets us calculate standard
errors and confidence intervals quite easily. Here, with the Gaussian assump-
tions, much more exact statements can be made about the distribution of β̂
around β. You can find the formulas in any textbook on regression, so I won’t
get into that.

We can also use a general property of MLEs for model testing. Suppose we
have two classes of models, Ω and ω. Ω is the general case, with p parameters,
and ω is a special case, where some of those parameters are constrained, but
q < p of them are left free to be estimated from the data. The constrained model
class ω is then nested within Ω. Say that the MLEs with and without the
constraints are, respectively, Θ̂ and θ̂, so the maximum log-likelihoods are L(Θ̂)
and L(θ̂). Because it’s a maximum over a larger parameter space, L(Θ̂) ≥ L(θ̂).
On the other hand, if the true model really is in ω, we’d expect the unconstrained
estimate and the constrained estimate to be coming closer and closer. It turns
out that the difference in log-likelihoods has an asymptotic distribution which
doesn’t depend on any of the model details, namely

2
[
L(Θ̂)− L(θ̂)

]
; χ2

p−q (9)

That is, a χ2 distribution with one degree of freedom for each extra parameter
in Ω (that’s why they’re called “degrees of freedom”).

This approach can be used to test particular restrictions on the model, and
so it sometimes used to assess whether certain variables influence the response.
This, however, gets us into the concerns of the next section.
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3.1 Examine the Residuals

By construction, the residuals of a fitted linear regression have mean zero and
are uncorrelated with the independent variables. If the usual probabilistic as-
sumptions hold, however, they have many other properties as well.

1. The residuals have a Gaussian distribution at each ~x.

2. The residuals have the same Gaussian distribution at each ~x, i.e., they are
independent of the predictor variables. In particular, they must have the
same variance (i.e., they must be homoskedastic).

3. The residuals are independent of each other. In particular, they must be
uncorrelated with each other.

These properties — Gaussianity, homoskedasticity, lack of correlation — are all
testable properties. When they all hold, we say that the residuals are white
noise. One would never expect them to hold exactly in any finite sample, but if
you do test for them and find them strongly violated, you should be extremely
suspicious of your model. These tests are much more important than checking
whether the coefficients are significantly different from zero.

Every time someone uses linear regression and does not test whether the
residuals are white noise, an angel loses its wings.

4 Linear Regression Is Not the Philosopher’s
Stone

The philosopher’s stone, remember, was supposed to be able to transmute base
metals (e.g., lead) into the perfect metal, gold (Eliade, 1971). Many people treat
linear regression as though it had a similar ability to transmute a correlation
matrix into a scientific theory. In particular, people often argue that:

1. because a variable has a non-zero regression coefficient, it must influence
the response;

2. because a variable has a zero regression coefficient, it must not influence
the response;

3. if the independent variables change, we can predict how much the response
will change by plugging in to the regression.

All of this is wrong, or at best right only under very particular circumstances.
We have already seen examples where influential variables have regression

coefficients of zero. We have also seen examples of situations where a variable
with no influence has a non-zero coefficient (e.g., because it is correlated with an
omitted variable which does have influence). If there are no nonlinearities and
if there are no omitted influential variables and if the noise terms are always
independent of the predictor variables, are we good?
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No. Remember from Equation 4 that the optimal regression coefficients
depend on both the marginal distribution of the predictors and the joint dis-
tribution (covariances) of the response and the predictors. There is no reason
whatsoever to suppose that if we change the system, this will leave the condi-
tional distribution of the response alone.

A simple example may drive the point home. Suppose we surveyed all the
cars in Pittsburgh, recording the maximum speed they reach over a week, and
how often they are waxed and polished. I don’t think anyone doubts that there
will be a positive correlation here, and in fact that there will be a positive
regression coefficient, even if we add in many other variables as predictors.
Let us even postulate that the relationship is linear (perhaps after a suitable
transformation). Would anyone believe that waxing cars will make them go
faster? Manifestly not; at best the causality goes the other way. But this is
exactly how people interpret regressions in all kinds of applied fields — instead
of saying waxing makes cars go faster, it might be saying that receiving targeted
ads makes customers buy more, or that consuming dairy foods makes diabetes
progress faster, or . . . . Those claims might be true, but the regressions could
easily come out the same way if the claims were false. Hence, the regression
results provide little or no evidence for the claims.

Similar remarks apply to the idea of using regression to “control for” extra
variables. If we are interested in the relationship between one predictor, or a few
predictors, and the response, it is common to add a bunch of other variables to
the regression, to check both whether the apparent relationship might be due to
correlations with something else, and to “control for” those other variables. The
regression coefficient this is interpreted as how much the response would change,
on average, if the independent variable were increased by one unit, “holding
everything else constant”. There is a very particular sense in which this is true:
it’s a prediction above the changes in the conditional of the response (conditional
on the given values for the other predictors), assuming that observations are
randomly drawn from the same population we used to fit the regression.

In a word, what regression does is probabilistic prediction. It says what
will happen if we keep drawing from the same population, but select a sub-set
of the observations, namely those with given values of the independent vari-
ables. A causal or counter-factual prediction would say what would happen if
(or Someone) made those variables take on those values. There may be no dif-
ference between selection and intervention, in which case regression can work as
a tool for causal inference2; but in general there is. Probabilistic prediction is a
worthwhile endeavor, but it’s important to be clear that this is what regression
does.

Every time someone thoughtlessly uses regression for causal inference, an
angel not only loses its wings, but is cast out of Heaven and falls in most
extreme agony into the everlasting fire.

2In particular, if we assign values of the independent variables in a way which breaks
possible dependencies with omitted variables and noise — either by randomization or by
experimental control — then regression can, in fact, work for causal inference.

15



A Where the χ2 Likelihood Ratio Test Comes
From

This appendix is optional.
Here is a very hand-wavy explanation for Eq. 9. We’re assuming that the

true parameter value, call it θ, lies in the restricted class of models ω. So
there are q components to θ which matter, and the other p− q are fixed by the
constraints defining ω. To simplify the book-keeping, let’s say those constraints
are all that the extra parameters are zero, so θ = (θ1, θ2, . . . θq, 0, . . . 0), with
p− q zeroes at the end.

The restricted MLE θ̂ obeys the constraints, so

θ̂ = (θ̂1, θ̂2, . . . θ̂q, 0, . . . 0)

The unrestricted MLE does not have to obey the constraints, so it’s

Θ̂ = (Θ̂1, Θ̂2, . . . Θ̂q, Θ̂q+1, . . . Θ̂p)

Because both MLEs are consistent, we know that θ̂i → θi, Θ̂i → θi if 1 ≤ i ≤ q,
and that Θ̂i → 0 if q + 1 ≤ i ≤ p.

Very roughly speaking, it’s the last extra terms which end up making L(Θ̂)
larger than L(θ̂). Each of them tends towards a mean-zero Gaussian whose
variance is O(1/n), but their impact on the log-likelihood depends on the square
of their sizes, and the square of a mean-zero Gaussian has a χ2 distribution with
one degree of freedom. A whole bunch of factors cancel out, leaving us with a
sum of p− q independent χ2

1 variables, which has a χ2
p−q distribution.

In slightly more detail, we know that L(Θ̂) ≥ L(θ̂), because the former is
a maximum over a larger space than the latter. Let’s try to see how big the
difference is by doing a Taylor expansion around Θ̂, which we’ll take out to
second order.

L(θ̂) ≈ L(Θ̂) +
p∑

i=1

(Θ̂i − θ̂i)
(

∂L

∂θi

∣∣∣∣
Θ̂

)
+

1
2

p∑
i=1

p∑
j=1

(Θ̂i − θ̂i)
(

∂2L

∂θi∂θj

∣∣∣∣
Θ̂

)
(Θ̂j − θ̂j)

= L(Θ̂) +
1
2

p∑
i=1

p∑
j=1

(Θ̂i − θ̂i)
(

∂2L

∂θi∂θj

∣∣∣∣
Θ̂

)
(Θ̂j − θ̂j) (10)

All the first-order terms go away, because Θ̂ is a maximum of the likelihood,
and so the first derivatves are all zero there. Now we’re left with the second-
order terms. Writing all the partials out repeatedly gets tiresome, so abbreviate
∂2L/∂θi∂θj as L,ij .

To simplify the book-keeping, suppose that the second-derivative matrix, or
Hessian, is diagonal. (This should seem like a swindle, but we get the same
conclusion without this supposition, only we need to use a lot more algebra —
we diagonalize the Hessian by an orthogonal transformation.) That is, suppose
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L,ij = 0 unless i = j. Now we can write

L(Θ̂)− L(θ̂) ≈ −1
2

p∑
i=1

(Θ̂i − θ̂i)2L,ii (11)

2
[
L(Θ̂)− L(θ̂)

]
≈ −

q∑
i=1

(Θ̂i − θ̂i)2L,ii −
p∑

i=q+1

(Θ̂i)2L,ii (12)

At this point, we need a fact about the asymptotic distribution of maximum
likelihood estimates: they’re generally Gaussian, centered around the true value,
and with a shrinking variance that depends on the Hessian evaluated at the true
parameter value; this is called the Fisher information, F or I. (Call it F .) If
the Hessian is diagonal, then we can say that

Θ̂i ; N (θi,−1/nFii)

θ̂i ; N (θ1,−1/nFii) 1 ≤ i ≤ q

θ̂i = 0 q + 1 ≤ i ≤ p

Also, (1/n)L,ii → −Fii.
Putting all this together, we see that each term in the second summation in

Eq. 12 is (to abuse notation a little)

−1
nFii

(N (0, 1))2nL,ii → χ2
1

so the whole second summation has a χ2
p−q distribution. The first summation,

meanwhile, goes to zero because Θ̂i and θ̂i are actually strongly correlated, so
their difference is O(1/n), and their difference squared is O(1/n2). Since L,ii is
only O(n), that summation drops out.

A somewhat less hand-wavy version of the argument uses the fact that the
MLE is really a vector, with a multivariate normal distribution which depends
on the inverse of the Fisher information matrix:

Θ̂ ; N (θ, (1/n)F−1)

Then, at the cost of more linear algebra, we don’t have to assume that the
Hessian is diagonal.

References

Berk, Richard A. (2004). Regression Analysis: A Constructive Critique. Thou-
sand Oaks, California: Sage.

Eliade, Mircea (1971). The Forge and the Crucible: The Origin and Structure
of Alchemy . New York: Harper and Row.

Faraway, Julian (2004). Linear Models with R. Boca Raton, Florida: Chapman
and Hall/CRC Press.

17


	Optimal Linear Prediction
	Collinearity
	Estimating the Optimal Linear Predictor

	Shifting Distributions, Omitted Variables, and Transformations
	Changing Slopes
	R2: Distraction or Nuisance?

	Omitted Variables and Shifting Distributions
	Transformation

	Adding Probabilistic Assumptions
	Examine the Residuals

	Linear Regression Is Not the Philosopher's Stone
	Where the 2 Likelihood Ratio Test Comes From

