
Evaluating Predictive Models

36-350, Data Mining

20 October 2008

1 Errors, In and Out of Sample

So far in the course, we have largely been concerned with descriptive models,
which try to summarize our data in compact and comprehensible ways, with
information retrieval, etc. We have seen some predictive models, in three forms:

• simple classifier algorithms (nearest neighbors and the prototype method),
which try to predict discrete class labels;

• regression models (linear, kernel, nearest neighbor, generalizations of lin-
ear) which try to predict the mean value of a quantitative response vari-
able1

• factor analysis, which tries to predict the distribution of a set of correlated
quantitative variables, and so lets us guess the values of some variables
from knowing the values of others.

Now, in the second half of the course, we are going to focus exclusively on
predictive models, i.e., ones which make some kind of assertion about what will
happen with new data.

With any predictive model, we can gauge how well it works by looking at its
accuracy, or equivalently at its errors. For classification, the usual measure
of error is the fraction of cases mis-classified, called the mis-classification
rate or just the error rate.2 For linear regression, the usual measure of error
is the sum of squared errors, or equivalently 1 − R2, and the corresponding
measure of accuracy is R2. In the method of maximum likelihood, the accuracy
is just the likelihood value, and the error is conventionally the negative log-
likelihood. When a model predicts a whole distribution (as factor analysis does),
the negative log-likelihood is the usual measure of error, though sometimes one
will use a direct measure of the distance between the predicted and the observed
distribution.

1Incidentally, we have only looked at predicting a single response variable, but we could
predict a vector of responses in the same way.

2With our information-retrieval examples, we had two accuracy measures, precision and
recall. This gives us two error rates. The raw mis-classification rate would just be their sum;
we could however also look at both type I and type II errors, and try to make some trade-off
between them.

1

What we would like, ideally, is a predictive model which has zero error on
future data. We basically never achieve this:

• Our models are never perfectly estimated. Even if our data come from a
perfect IID source, we only ever have a finite sample, and so our parameter
estimates are never quite the true values (almost surely). But we can hope
to make this source of imperfection smaller and smaller as we get more
data.

• Our models are always more or less mis-specified, or, in plain words,
wrong. We never get the functional form of the regression, the distribution
of the exogenous noise, the form of the causal dependence between two
factors, etc., exactly right.3 Of course we can get any of the details in the
model specification more or less wrong, and we’d prefer to be less wrong.

• Things change, even as we try to model them. In many scientific areas,
we can hope to find and model invariant relationships, aspects of how
the universe is put together that change very slowly, or not at all. The
areas where people use data mining are, for the most part, not like that
at all. In commercial applications, in particular, ten years is a very long
time; conditions ten years ago were very different, twenty years ago were
extremely different, and thirty years ago can seem like another world.
None of you were alive alive thirty years ago, but trust me.4 Yet, collecting
daily observations, ten years is only 3652 sample points, which is not a lot
when trying to fit a complicated model. Extending the data by looking
in parallel at many different individuals or other units helps, but does not
eliminate the fundamental problem. By the time our model comes to the
end of its path and has converged, the world has moved on, and the data
we used at the beginning is simply no longer relevant.

• The world just really is a noisy and stochastic place, and this means even
the true, ideal model has non-zero error.5 If Y = βX + ε, ε ∼ N (0, σ2),
then σ2 sets a limit on how well Y can be predicted, and nothing will get
us below that limit.

Exercise: Express the R2 of the true model as a function of σ2 and
Var [X].

So, because our models are flawed, and the world they are trying to model is
both stochastic and changing, we can not expect even the best model to have

3Except maybe in fundamental physics, and even there our predictions are about our
fundamental theories in the context of experimental set-ups, which we never model in complete
detail, and anyway the next point applies.

4Interestingly, the same statement could have been truthfully made at any point in the last
150 or even 200 years. So the fact of rapid change seems, itself, to be a constant of industrial
society.

5This is so even if you believe in some kind of ultimate determinism, because the variables
we plug in to our predictive models are not complete descriptions of the physical state of
the universe, but rather immensely coarser, and this coarsens shows up as randomness. For
details, if you care, take 36-462 next semester.

2

zero error all the time. Instead, we would like to minimize the expected error,
or risk, on future data.

If we didn’t care about future data specifically, minimizing expected er-
ror would be easy. We have various possible models, each with different pa-
rameter settings, conventionally written θ. We also have a collection of data
x1, x2, . . . xn ≡ x. For each possible model, then, we can compute the error
on the data, L(x, θ), called the in-sample loss or the empirical risk. The
simplest strategy is then to pick the model, the value of θ, which minimizes the
in-sample loss. This strategy is imaginatively called empirical risk minimiza-
tion. This means picking the classifier with the lowest in-sample error rate, or
the regression which minimizes the sum of squared errors, or the likelihood-
maximizing parameter value — what you’ve usually done in statistics courses
so far.

There is however a potential problem here, because L(x, θ) is not what we
really want to minimize. Past data is, after all, past, and “let the dead bury the
data”; we care about what will happen in the future. That is, E [L(X, θ)], the
expected loss on new data drawn from the same distribution. This is also called
the risk, as I said, or the out-of-sample loss, or the generalization error
(because it involves generalizing from the old data to new data). The in-sample
loss equals the risk plus sampling noise:

L(x, θ) = E [L(X, θ)] + ηn(θ)

Here η(θ) is a random term which has mean zero, and represents the effects
of having only a finite quantity of data, of size n, rather than the complete
probability distribution. (I write it ηn(θ) as a reminder that different models
are going to be effected differently by the same sampling fluctuations.) The
problem, then, is that the model which minimizes the in-sample loss could be
one with good generalization performance (E [L(X, θ)] is small), or it could be
one which got very lucky (ηn(θ) was large and negative).

We hope that ηn(θ) → 0 as n → ∞. This hope rests on the law of large
numbers, at least if the error measure L is not too complicated. This is not quite
enough for empirical risk minimization to work, i.e., for the parameter value
which minimizes the in-sample risk to converge on the one which minimizes the
out-of-sample risk. The complication is that the rate at which ηn(θ) goes to zero
can depend on θ. The faster the rate at which these fluctuations die away, the
easier it is to estimate a model’s generalization error. When the rates change
with θ, it becomes unclear whether a model which did well in-sample is really
good, or just from a part of the parameter space where performance is hard
to discern. The main tools of statistical learning theory are therefore uniform
laws of large numbers, which control the size of the fluctuations ηn(θ) for all θ
simultaneously.

Learning theory is a beautiful, deep, and practically important subject, but
also subtle and involved one.6 Rather than try to explain Vapnik-Chervonenkis

6Some comparatively easy starting points are Kearns and Vazirani (1994) or Cristianini
and Shawe-Taylor (2000). At a more advanced level, look at the review paper by Bousquet
et al. (2004), or read the book by Vapnik (2000) (one of the founders), or take the class 36-712.

3

dimension and empirical process theory at this level, I will stick with some more-
or-less heuristic methods, which are generally good enough for many purposes.

2 Some Examples: Over-Fitting and Under-Fitting

To see how these distinctions between in-sample and out-of-sample performance
can matter, consider choosing among different classes of models — also called
model selection. We are fortunate enough to have in our possession twenty
labeled data points, with covariates and a response, and all we have to do is
guess the response variable. We recognize this as a supervised learning problem,
specifically regression, so we try different regression models. In fact, we try ten
different polynomial regressions, running from a constant prediction through a
linear model up to polynomials of order nine. Figure 1 shows the results.

Looking at the figure suggests that the higher-order polynomials give better
fits. In fact, this has to be true, since we’re (i) looking for the best-fitting
polynomial of a given order, and (ii) every lower-order polynomial is a special
case of the higher-order ones. We can confirm this by looking at the mean
squared error (= residual sum of squares/n), as in Figure 2.

Since there are only twenty data points, if I continued this out to polynomials
of degree twenty, I could get the mean squared error down to zero, apparently
perfect prediction. That this is not a good idea becomes clear when we take
these models and try to generalize to new data, such as an extra 200 data
points drawn from exactly the same distribution. Let’s begin by just adding the
generalization error to the previous plot (Figure 3).

Since all o the error measurements don’t fit on the same plot, we expand the
vertical range... but they still don’t fit (Figure 3). Switching to a logarithmically-
scaled vertical axis (Figure 5), we see that the generalization error grows very
rapidly indeed with the order of the polynomial — and it only grows. To get
a sense of what’s going wrong, let’s go back to our scatterplot-plus-estimated-
curves figure, and add the new data points (Figure 6).

Notice, first of all, that the fits now all look horrible. Some of the estimated
curves come quite close to the training data (black circles), but none of them
bear any particular relation to the testing data (blue triangles). Notice, second
of all, that all of the curves zoom off to ±∞ as we go away from the center of
the data, except for the flat line belonging to the constant, order-0 polynomial.
This is part of why the higher order polynomials do so incredibly badly: they’re
blowing up outside the range of the original sample, which is to say where a
non-trivial number of the new data are.

However, the blowing-up issue isn’t the whole story. The next figure shows
what happens when we only include testing data points that fall within the
original range. (We don’t usually have this kind of luxury in reality, of course.)
The generalization error still climbs with the polynomial order, though less
dizzyingly. Why?

What’s going on here is that the more complicated models — the higher-
order polynomials, with more terms and parameters — were not actually fitting

4

-1.5 -1.0 -0.5 0.0 0.5 1.0

-2
-1

0
1

2

x

y0

plot(x,y0)
y0.0 = lm(y0 ~ 1)
abline(h=y0.f0$coefficients[1])
d = seq(-2,2,length.out=200)
for (degree in 1:9) {
fm = lm(y0 ~ poly(x,degree))
assign(paste("y0",degree,sep="."), fm)
lines(d, predict(fm,data.frame(x=d)),lty=(degree+1))
}

Figure 1: Twenty training data points (dots), and ten different fitted regression
lines (polynomials of order 0 to 9, indicated by different line types). R notes:
The poly command constructs orthogonal (uncorrelated) polynomials of the specified
degree from its first argument; regressing on them is conceptually equivalent to re-
gressing on 1, x, x2, . . . xdegree, but more numerically stable. (See help(poly).) This
use of the assign and paste functions together is helpful for storing results which
don’t fit well into arrays.

5

0 2 4 6 8

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

mse = vector(length=10)
for (degree in 0:9) {
fm = get(paste("y0",degree,sep="."))
mse[degree+1] = mean(summary(fm)$residuals^2)
}
plot(0:9,mse,type="b",xlab="polynomial degree",

ylab="mean squared error")

Figure 2: In-sample mean squared error of the different polynomials on the data
in Figure 1.

6

0 2 4 6 8

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

Figure 3: Mean-squared errors for the models in the previous figure, adding
out-of-sample, generalization error in blue triangles.

7

0 2 4 6 8

0
2

4
6

8
10

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

Figure 4: As in the previous figure, but with the vertical range expanded.

8

0 2 4 6 8

1e
+0
0

1e
+0
2

1e
+0
4

1e
+0
6

1e
+0
8

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

Figure 5: As in the previous figure, but with a log scale on the vertical axis.

9

-3 -2 -1 0 1 2

-2
-1

0
1

2
3

x

y0

Figure 6: Data and polynomial curves from Figure 1, plus new data from the
same source (blue triangles). Note the change in scale on both axes.

10

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

Figure 7: Generalization error, as in Figure 4, but only evaluated on points
which fall within the same range as the training set.

11

the generalizable features of the data. Instead, they were fitting the sampling
noise, the accidents which don’t repeat. That is, the more complicated models
over-fit the data. In terms of our earlier notation, η is bigger for the more
flexible models. The model which does best here is the flat-line, constant model,
because the true regression function happens to be of that form — X and Y
are independent standard Gaussians. The more powerful, more flexible, higher-
order polynomials were able to get closer to the training data, but that just
meant matching the noise better. The dumber models lack the same ability to
fit the data, but by the same token it’s much harder for them to over-fit.

Does this mean that simpler is always best? No. Consider the data in
Figure 8. This has the same X values as before, but now Y = 7X2 − 0.5X + ε,
ε ∼ N (0, 1). That is, the true regression curve is quadratic. We can repeat the
same steps with the new data.

Looking at the plot of mean squared error versus polynomial degree, we see
that much of it is similar to the same plot for the case where the right model
is a zeroth-order polynomial: the in-sample error declines monotonically as the
order of the model grows. That is, yet again, higher-order polynomials have
more flexibility, and so more capacity to match the data. Out of sample, adding
too much capacity leads to huge errors. The best generalization performance
comes from using the right model class (here, second-order polynomials). The
difference, now, is that it’s possible to have too little capacity, as with zeroth-
and first- order models. These also do badly on future data, because they are
under-fit. This is the more usual case; when we can plot the generalization
error versus model capacity, it usually has a minimum.

In these two cases, we get our best generalization performance by using the
correct model class. This is possible because our models are well-specified. What
if the true regression function does not belong to any class of model available
to us? Then there is still generally a capacity/error minimum, but the location
of the minimum, i.e., which model class generalizes best, can depend on the
sample size.

To understand why, remember that we can always decompose the mean-
squared error into bias (squared) plus variance. (Similar decompositions hold
for other error measures.) If none of our model classes contain the truth, they
are all more or less biased; the size of the bias does not, however, depend on n —
it’s basically the mis-match between the best model in that class and the truth.
The variance term does depend on n — it’s related to ηn. Since high-capacity
models start with large values of ηn when n is small, their total generalization
error can be larger than that of low-capacity models. As n grows, however, their
variance penalty declines, and their superior flexibility (smaller bias) takes over.
(If this isn’t clear now, wait for the homework!)

Exercise: Why does the argument above break down when the true model
does belong to one of our model classes?

There is nothing special about polynomials here. All of the same lessons ap-
ply to any other flexible family of models, such as k-nearest neighbors (where we
need to choose k), or kernel regression (where we need to choose the bandwidth),
or local linear regression (where we need to choose the smoothing range), or fac-

12

-1.5 -1.0 -0.5 0.0 0.5 1.0

0
5

10
15

x

y2

Figure 8: Scatter-plot showing sample data and the true, quadratic regression
curve (grey parabola).

13

-1.5 -1.0 -0.5 0.0 0.5 1.0

0
5

10
15

x

y2

Figure 9: Polynomial fits to the data in the previous figure.

14

-3 -2 -1 0 1 2

0
20

40
60

80

x

y2

Figure 10: Previous figure, with addition of new data points (blue triangles).
This figure has zoomed out to show the range of the new data, which helps
distinguish the different regression curves.

15

0 2 4 6 8

0
50

10
0

15
0

20
0

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

0 2 4 6 8

1e
+0
0

1e
+0
2

1e
+0
4

1e
+0
6

polynomial degree

m
ea

n
sq

ua
re

d
er

ro
r

Figure 11: In-sample and generalization error for the quadratic case. The left-
hand plot shows the mean squared error (black for in-sample, blue for general-
ization) on a linear scale; the right-hand plot uses a logarithmic scale.

tor analysis (where we need to choose the number of factors), or other methods
we’ll see later.

3 Model Selection and Capacity Control

The biggest single problem with making data mining work is bad data. The
second biggest problem is controlling model capacity, making sure it’s neither
so small that we’re missing useful and exploitable patterns, nor so large that we
are confusing pattern and noise.

How can we do this?

3.1 Some Model Selection Methods

Big Data The simplest approach to dealing with over-fitting is to hope that
it will go away. As we get more and more data, the law of large numbers (and
other limit theorems) tell us that it should become more and more representative
of the true data-generating distribution, assuming there is one. Thus, η, the
difference between the empirical risk and the generalization risk, should grow
smaller and smaller. If you are dealing with a lot of data, you can hope that
η is very small, and that minimizing the in-sample loss will give you a model
which generalizes almost as well as possible. Unfortunately, if your model is
very flexible, “lots of data” can be exponentially large.

A slightly more subtle point is what happens in cases like the polynomials,
where the larger-capacity models always have better fits. Then empirical risk
minimization will always select the largest-capacity model class you let it. If
that maximum capacity is fixed, this can be OK: suppose the real regression

16

function is quadratic, but we allow polynomials of up to order twenty. Empirical
risk minimization will always pick the model of order 20, but as the data grows
more and more of the terms in that model (20-3 = 17, to be precise) will be
shrinking to zero, and we’ll be getting a closer and closer approximation to the
correct cubic. If we knew it was a cubic we could do better by setting those
terms exactly to zero — they’re adding variance without reducing bias — but,
with enough data, this works OK.

This same idea can apply even when it seems like we’re not doing model
selection, as when we do a big linear regression of a response on a whole mess
of variables. With enough data, the coefficients which should be zero will all
become small, and have little influence on our predictions, so long as new data
has the same distribution as the old.

This approach, however, will generally fail if we allow the classes of models
to grow as we consider more data, or if we have an infinite collection of model
classes to start with. We can always fit n data points exactly with an nth order
polynomial, so without a limit on the order we always select a curve which goes
exactly through the training data and generalizes horribly.

Penalization The next bright idea is to say that if the problem is over-flexible
models, we should penalize flexibility. That is, instead of minimizing L(x, θ),
minimize L(x, θ)+λg(θ), where g(θ) is some kind of indication of the complexity
or flexibility of θ, say the number of parameters, and λ is our trade-off factor.
Standard linear regression packages implement a simple scheme like this in the
form of “adjusted R2.”7

Two more refined ideas for regression are called ridge regression, where
the penalized error measure is

1
n

n∑
i=1

(yi − xiθ))
2 + λ

p∑
j=1

θ2
j

and the lasso,
1
n

n∑
i=1

(yi − xiθ))
2 + λ

p∑
j=1

|θj |

In both cases, the penalty “marks down” models which give lots of weight to
many predictors, compared to those with smaller coefficients but similar errors.
The lasso, in particular, tends to shrink regression coefficients to zero when it
can. The trade-off here is controlled by λ, which becomes another adjustable

7The idea there is that adding an extra predictor variable can never increase the residual
sum of squares. (We can always get our old solution back by setting the coefficient equal to
zero.) So R2, in sample, must be a non-increasing function of the number of independent
variables. Assume that the real regression coefficient of the variable we’re adding is zero, and
a lot of extra assumptions like independent Gaussian noise, we can calculate the expected
increase in R2 when we go from p to p + 1 independent variables, and the true regression
coefficient on the p + 1st variable is zero. This expected decrease in the RSS is what adjusted
R2 is adjusted by.

17

control setting, and so it needs to be picked by some other method; the usual
approach is cross-validation.

Capacity Control Penalization can work very well, but the trick is in choos-
ing the penalty term; the number of parameters is often used but not always
appropriate, though it is in the polynomial example. The real issue is what I
have already referred to a few times as capacity. Roughly speaking, the idea
is that a class of models has high capacity if changing the data a little bit gives
rise to a very different model, i.e., one which makes very different predictions. A
more exact view is to look at how many distinct models we can get by changing
the data, where “distinct” involves setting some threshold on how different the
models’ predictions must be. Low-capacity model classes are insensitive to the
data, and the number of distinct models grows only slowly with the number of
data points. High-capacity model classes are very sensitive to the data.8 The
trade-off, again, is between have a (potentially) high bias, and having a high
variance — between under-fitting and over-fitting.

Capacity, in this sense, is often related to the number of parameters, but not
always. There are examples (not crazy ones, even) of model classes with one
adjustable parameter whose capacity is, in fact, infinite, making generalization
very difficult indeed.9 In the case of things like kernel regression or nearest
neighbors, choosing a large neighborhood (high k or high bandwidth) reduces
the capacity, by making the model less sensitive to the data.

All of this suggests that a reasonable kind of penalty to apply would be an
estimate of how big ηn(θ) can get. All else being equal, this will be large for
high-capacity model classes, and it will shrink as n grows. Statistical learning
theory provides tools for estimating those penalties, and the resulting strategy
is called structural risk minimization. However, computing capacity-based
penalties is hard, because one needs to know the capacities of different model
classes, which are generally quite difficult to compute. (Trust me, or read the
references, or take 36-712.)

Cross-Validation Since we often aren’t in a position to use real capacity-
based penalties, what shall we do instead? A short-cut trick, which is often
reliable and in some ways is the industry standard, is to simulate the process of
fitting to different data sets and seeing how different the predictions can be.

Divide your data at random into two parts. Call the first part the train-
ing set, and use it to fit your models. Then evaluate their performance on
the other part, the testing set. Because you divided the data up randomly,
the performance on the test data should be an unbiased estimate of the gen-
eralization performance. (But, unbiased doesn’t necessarily mean “close”.) In

8To be really precise, we need to consider not just the scaling with the number of data
points but also the scaling with the cut-off for being distinct models, except in the case of
classification where the outputs are discrete. See Vapnik (2000) for details.

9The canonical example is to take classifiers which output 1 if sin ax is positive and 0
otherwise. That is, the classes correspond to two halves of a periodic cycle. By adjusting a,
one can always match the classes on any collection of binary-labeled data.

18

fact, you can do this multiple times, say selecting 90% of the data at random
to be the training set, testing on the remaining 10%, and then repeating this
ten times, with different choices of training and test sets, and picking the model
which comes out best when averaged over these ten trials; this is called ten-fold
cross-validation. (There is nothing magic about ten, it’s just large enough to
get a bit of averaging but small enough to usually run in decent time.)

The reason cross-validation works is that it uses the existing data to simulate
the process of generalizing to new data. If the full sample is large, then even
the smaller portion of it in the training data is, with high probability, fairly
representative of the data-generating process. Randomly dividing the data into
training and test sets makes it very unlikely that the division is rigged to favor
any one model class, over and above what it would do on real new data. Of
course the original data set is never perfectly representative of the full data,
and a smaller testing set is even less representative, so this isn’t ideal, but the
approximation is often quite good.

(Of course, all of this assumes that the original data is in fact a representative
sample of the data we will be applying our models to in the future — that
our data-generating process isn’t biased, that there isn’t too much dependence
between data points, etc.)

Why Chose? Alternately, we can refuse to pick a model at all, and simply
average all the ones we feel like fitting. We’ll say more about this later.

3.2 Warnings

Two caveats are in order.

1. All the model selection methods we have discussed aim at getting models
which predict well. This is not necessarily the same as getting the true
theory of the world. Presumably the true theory will also predict well, but
the converse does not necessarily follow.

2. All of these model selection methods aim at getting models which will
generalize well to new data, if it follows the same distribution as old data.
Generalizing well even when distributions change is a much harder and
much less well-understood problem. (This relates to the first problem, of
course.)

References

Bousquet, Olivier, Stéphane Boucheron and Gábor Lugosi (2004). “Introduction
to Statistical Learning Theory.” In Advanced Lectures in Machine Learning
(Olivier Bousquet and Ulrike von Luxburg and Gunnar Rätsch, eds.), pp. 169–
207. Berlin: Springer-Verlag. URL http://www.econ.upf.edu/∼lugosi/
mlss slt.pdf.

19

http://www.econ.upf.edu/~lugosi/mlss_slt.pdf
http://www.econ.upf.edu/~lugosi/mlss_slt.pdf

Cristianini, Nello and John Shawe-Taylor (2000). An Introduction to Support
Vector Machines: And Other Kernel-Based Learning Methods. Cambridge,
England: Cambridge University Press.

Kearns, Michael J. and Umesh V. Vazirani (1994). An Introduction to Compu-
tational Learning Theory . Cambridge, Massachusetts: MIT Press.

Vapnik, Vladimir N. (2000). The Nature of Statistical Learning Theory . Berlin:
Springer-Verlag, 2nd edn.

20

	Errors, In and Out of Sample
	Some Examples: Over-Fitting and Under-Fitting
	Model Selection and Capacity Control
	Some Model Selection Methods
	Warnings

