
Using Nonparametric Smoothing: Adaptation

and Testing Parametric Models

36-350, Data Mining

24 October 2008

We are still talking about regression, i.e., a supervised learning problem.
Recall the basic kind of smoothing we are interested in: we have a response

variable Y , some input variables which we bind up into a vector X, and a
collection of data values, (x1, y1), (x2, y2), . . . xn, yn). By “smoothing”, I mean
that predictions are going to be weighted averages of the observed responses in
the training data:

r̂(x) =
n∑

i=1

yiw(x, xi, h)

Most smoothing methods have a control setting, which here I write h, that
determines how much smoothing we do. With k nearest neighbors, for instance,
the weights are 1/k if xi is one of the k-nearest points to x, and w = 0 otherwise,
so large k means that each prediction is an average over many training points.
Similarly with kernel regression, where the degree of smoothing is controlled by
the bandwidth h. (See section 4 of lecture 16 for refreshers on both of these.)

Why do we want to do this? How do we pick how much smoothing to do?

1 How Much Smoothing? Adapting to Unknown
Roughness

Consider Figure 1, which graphs two functions, f and g. Both are “smooth”
functions in the qualitative, mathematical sense (C∞: they’re not only con-
tinuous, their derivatives exist and are continuous to all orders). We could
Taylor expand both functions to approximate their values anywhere, just from
knowing enough derivatives at one point x0. Alternately, if instead of know-
ing the derivatives at x0, we have the values of the functions at a sequence of
points x1, x2, . . . xn, we could use interpolation to fill out the rest of the curve.
Quantitatively, however, f(x) is less smooth than g(x) — it changes much more
rapidly, with many reversals of direction. For the same degree of inaccuracy in
the interpolation f(·) needs more, and more closely spaced, training points xi

than goes g(·).

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

0.
5

1.
0

x

f(x
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
4

0.
8

1.
2

x

g(
x)

Figure 1: Two curves for the running example. Above, f(x); below, g(x). (As
it happens, f(x) = sinx cos 20x, and g(x) = log x + 1, but that doesn’t really
matter.)

2

Now suppose that we don’t get to actually get to see f(x) and g(x), but
rather just f(x) + ε and g(x) + η, where ε and η. (To keep things simple I’ll
assume they’re the usual mean-zero, constant-variance, IID Gaussian noises,
say with σ = 0.15.) The data now look something like Figure 2. Can we now
recover the curves?

If we had multiple measurements at the same x, then we could recover the
expectation value by averaging: since the regression curve r(x) = E [Y |X = x],
if we had many observations at the same xi, the average of the corresponding
yi would (by the law of large numbers) converge on r(x). Generally, however,
we have at most one measurement per value of x, so simple averaging won’t
work. Even if we just confine ourselves to the xi where we have observations,
the mean-squared error will always be σ2, the noise variance. However, our
estimate will be unbiased.

What smoothing methods try to use is that we may have multiple measure-
ments at points xi which are near the point of interest x. If the regression
function is smooth, as we’re assuming it is, r(xi) will be close to r(x). Re-
member that the mean-squared error is the sum of bias (squared) and variance.
Averaging values at xi 6= x is going to introduce bias, but averaging many in-
dependent terms together also reduces variance. If by smoothing we get rid of
more variance than we gain bias, we come out ahead.

Here’s a little math to see it. Let’s assume that we can do a first-order
Taylor expansion, so

r(xi) ≈ r(x) + (xi − x)r′(x)

and
yi ≈ r(x) + (xi − x)r′(x) + εi

Now we average: to keep the notation simple, abbreviate the weight w(xi, x, h)
by just wi.

r̂(x) =
1
n

n∑
i=1

yiwi

=
1
n

n∑
i=1

(r(x) + (xi − x)r′(x) + εi)wi

= r(x) +
n∑

i=1

wiεi +
n∑

i=1

wi(xi − x)r′(x)

r̂(x)− r(x) =
n∑

i=1

wiεi +
n∑

i=1

wi(xi − x)r′(x)

E
[
(r̂(x)− r(x))2

]
= σ2

n∑
i=1

w2
i + E

(n∑
i=1

wi(xi − x)r′(x)

)2

(Remember that:
∑

wi = 1, that E [εi] = 0, that the noise is uncorrelated with
everything, and that E [εi] = σ2.)

3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+
ep
si
lo
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+e
ta

Figure 2: The same two curves as before, but corrupted by IID Gaussian noise
with mean zero and standard deviation 0.15. (Different noise realizations for
the two curves.) The light grey line shows the noiseless curves.

4

The first term on the final right-hand side is variance, which will tend to
shrink as n grows. (If wi = 1/n, the unweighted averaging case, we get back the
familiar σ2/n.) The second term, on the other hand, is bias, which grows with
how far the xi are from x, and the magnitude of the derivative, i.e., how smooth
or wiggly the regression function is. For this to work, wi had better shrink as
xi − x and r′(x) grow.1 Finally, all else being equal, wi should also shrink with
n, so that the over-all size of the sum shrinks as we get more data.

To illustrate, let’s try to estimate f(1.6) and g(1.6) from the noisy observa-
tions. We’ll try a simple approach, just averaging all values of f(xi) + εi and
g(xi) + ηi for 1.5 < xi < 1.7 with equal weights. For f , this gives 0.41, while
f(1.6) = 0.83. For g, this gives 0.98, with g(1.6) = 0.95. (See figure 3). The
same size window introduces a much larger bias with the rougher, more rapidly
changing f than with the smoother, more slowly changing g. Varying the size
of the averaging window will change the amount of error, and it will change it
in different ways for the two functions.

If we look at the expression for the mean-squared error of the smoother,
we can see that it’s quadratic in the weights wi. However, once we pick the
smoother and take our data, the weights wi are all functions of h, the control
setting which determines the degree of smoothing. So in principle there will be
an optimal choice of h. We can find this through calculus — take the derivative
of the MSE with respect to h (via the chain rule) and set it equal to zero — but
the expression for the optimal h involves the derivative r′(x) of the regression
function. Of course, if we knew the derivative of the regression function, we
would basically know the function itself (just integrate), so we seem to be in a
vicious circle, where we need to know the function before we can learn it.

One way of expressing this is to talk about how well a smoothing procedure
would work, if an Oracle were to tell us the derivative, or (to cut to the chase) the
optimal bandwidth hopt. Since most of us do not have access to such oracles, we
need to estimate hopt.2 Once we have this estimate, ĥ, then we get out weights
and our predictions, and so a certain mean-squared error. Basically, our MSE
will be the Oracle’s MSE, plus an extra term which depends on how far ĥ is to
hopt, and how sensitive the smoother is to the choice of bandwidth.

What would be really nice would be an adaptive procedure, one where our
actual MSE, using ĥ, approaches the Oracle’s MSE, which it gets from hopt.
This would mean that, in effect, we are figuring out how rough the underlying
regression function is, and so how much smoothing to do, rather than having
to guess or be told. An adaptive procedure, if we can find one, is a partial3

substitute for prior knowledge.
1The higher derivatives of r also matter, since we should really be keeping more than just

the first term in the Taylor expansion, but you get the idea.
2Notice that h is not a property of the data-generating process, like most parameters we

estimate, but rather something which depends on both that process (here, the roughness of
the regression function) and on our particular prediction method. The best bandwidth for
Gaussian-kernel regression isn’t the best bandwidth for box-car-kernel regression, and neither
is the best number of neighbors for k-NN regression. In particular, the optimal h is going to
change with n.

3Only partial, because we’d always do better if the Oracle would just tell us hopt.

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

x

f(x
)+
ep
si
lo
n x

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

g(
x)
+e
ta x

Figure 3: Relationship between smoothing and function roughness. In both
the upper and lower panel we are trying to estimate the value of the regression
function at x = 1.6 from averaging observations taken with 1.5 < xi < 1.7
(black points, others are “ghosted” in grey). The location of the average in
shown by the large black X. Averaging over this window works poorly for the
rough function f(x) in the upper panel (the bias is large), but much better for
the smoother function in the lower panel (the bias is small).

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Radius of averaging window

A
bs

ol
ut

e
va

lu
e

of
 e

rr
or

Figure 4: Estimating f(1.6) and g(1.6) from averaging observed values at 1.6−
h < x < 1.6 + h, for different radii h. Circles: error of estimates of f(1.6);
diamonds: error of estimates of g(1.6); dashed line: σ, the standard deviation
of the noise.

7

The most straight-forward way to pick a bandwidth, and one which generally
manages to be adaptive, is in fact cross-validation; either leave-one-out or k-fold
CV usually works pretty well. The random-division CV would work in the usual
way, going over a grid of possible bandwidths. Here is how it would work with
the input variable being in the vector x and the response in the vector y, and
using the R-builtin function ksmooth with a Gaussian kernel.

bandwidths = (1:50)/50
num.bws = length(bandwidths)
MSEs = vector(length=num.bws)
MSEs = rep(0,num.bws)
names(MSEs) = bandwidths
num.folds=10
training.fraction = 0.9
n = length(x)
n.train = floor(training.fraction*n)
n.test = n - n.train
for (i in 1:num.folds) {
train.rows = sample(1:n,size=n.train,replace=FALSE)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
ksmooth returns predictions in order of increasing x values;
we may as well sort things into that order now
y.test = y.test[order(x.test)]
x.test = sort(x.test)
for (bw in bandwidths) {
predicted = ksmooth(x.train,y.train,kernel="normal",bandwidth=bw,

n.points=n.test,x.points=x.test)$y
MSEs[paste(bw)] <- MSEs[paste(bw)] + mean((predicted-y.test)^2)

}
}
MSEs = MSEs/num.folds

At the end of this, the vector MSEs contains the cross-validated mean-squared
errors of all the different bandwidths in the vector bandwidths.4 The best
bandwidth can then be selected by which.min. All of this is encapsulated in a
function, cv.ksmooth, on a later page.

4R Trickery Explanation: Notice that MSEs is first created as a vector of all 0s, and
then its components are given names, which happen to the bandwidths. This allows us to
access them later by those names. However, bw is a vector of numbers, and names are always
character strings. When we say names(MSEs) = bandwidths, the names function is smart
enough to automatically convert bandwidths into strings, but later when we want to access
specific elements of MSEs, we have to do the conversion ourselves. The paste function is the
easiest way to do this.

8

Figure 5 plots the CV estimate of the (root) mean-squared error versus
bandwidth for our two curves. Figure 6 shows the data, the actual regression
functions and the estimated curves with the CV-selected bandwidths.

9

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Bandwith

R
oo

t-M
ea

n-
S

qu
ar

ed
 E

rr
or

Figure 5: Cross-validated estimate of the (root) mean-squard error as a function
of the bandwidth. Circles: data from f(x); diamonds: data from g(x). Notice
that the rougher curve is more sensitive to the choice of bandwidth, and that
the smoother curve is more preditable at every choice of bandwidth. CV selects
bandwidths of 0.06 for f and 0.4 for g.

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1
.0

0.
0

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

Figure 6: Data from the running examples (circles), actual regression func-
tions (grey curves) and kernel estimates of regression functions with CV-selected
bandwidths (black curves).

11

cv.ksmooth = function(x,y,bandwidths,num.folds=10,training.fraction=0.9) {
num.bws = length(bandwidths)
MSEs = vector(length=num.bws)
MSEs = rep(0,num.bws)
names(MSEs) = bandwidths
n = length(x)
n.train = floor(training.fraction*n)
n.test = n - n.train
for (i in 1:num.folds) {
train.rows = sample(1:n,size=n.train,replace=FALSE)
x.train = x[train.rows]
y.train = y[train.rows]
x.test = x[-train.rows]
y.test = y[-train.rows]
y.test = y.test[order(x.test)]
x.test = sort(x.test)
for (bw in bandwidths) {
predicted = ksmooth(x.train,y.train,kernel="normal",bandwidth=bw,

n.points=n.test,x.points=x.test)$y
MSEs[paste(bw)] <- MSEs[paste(bw)] + mean((predicted-y.test)^2)

}
}
MSEs = MSEs/num.folds
best.bw = as.numeric(names(which.min(MSEs)))
fit = ksmooth(x,y,kernel="normal",bandwidth=best.bw,n.points=n,

x.points=x)
return(fit)

}

2 Testing Functional Forms

One important, but under-appreciated, use of nonparametric regression is in
testing whether parametric regressions are well-specified.

The typical parametric regression model is something like

Y = f(X; θ) + ε

where f is some function which is completely specified except for the adjustable
parameters θ, and ε, as usual, is uncorrelated noise. Overwhelmingly, f is linear
in the variables in X, or perhaps includes some interactions between them.

How can we tell if the specification is right? If, for example, it’s a linear
model, how can we check whether there might not be some nonlinearity? One
common approach is to modify the specification by adding in specific departures
from the modeling assumptions — say, adding a quadratic term — and seeing
whether the coefficients that go with those terms are significantly non-zero, or

12

whether the improvement in fit is significant.5 For example, one might compare
the model

Y = θ1x1 + θ2x2 + ε

to the model
Y = θ1x1 + θ2x2 + θ3x

2
1 + ε

by checking whether the estimated θ3 is significantly different from 0, or whether
the residuals from the second model are significantly smaller than the residuals
from the first.

This can work, if you have chosen the right nonlinearity to test. It has the
power to detect certain mis-specifications, if they exist, but not others. (What
if the departure from linearity is not quadratic but cubic?) If you have good
reasons to think that if the model is wrong, it can only be wrong in certain
ways, fine; if not, though, why only check for those errors?

Nonparametric regression effectively lets you check for all kinds of systematic
errors, rather than singling out a particular one. Here is the basic procedure
(though there are many variants).

1. Get data (x1, y1), (x2, y2), . . . (xn, yn).

2. Fit the parametric model, getting an estimate θ̂, and mean-squared error
MSEp(θ̂).

3. Fit your favorite nonparametric regression (using cross-validation to pick
control settings as necessary), getting curve r̂ and mean-squared error
MSEnp(r̂).

4. Calculate tobs = MSEp(θ̂) − MSEnp(r̂). Generally (but not always!)
tobs > 0, since the nonparametric model has higher capacity than the
parametric one does.

5. Simulate from the parametric model θ̂ to get faked data (x′1, y
′
1), . . . (x

′
n, y′n).

6. Fit the parametric model to the simulated data, getting estimate θ̃ and
MSEp(θ̃).

7. Fit the nonparametric model to the simulated data, getting estimate r̃
and MSEnp(r̃).

8. Calculate T = MSEp(θ̃)−MSEnp(r̃).

9. Repeat steps 5–8 many times to get an estimate of the distribution of T .

10. The p-value is # {T > tobs} /#T .

5In my experience, this is second in popularity only to ignoring the issue.

13

What’s the logic here? We know that the nonparametric model has higher
capacity than the parametric one, so it should generally be able to fit the data
more closely, even if the parametric model is correct. So tobs > 0 is positive isn’t
evidence against the parametric model by itself. But the size of the difference in
fits matters. By simulating from the parametric model, we generating surrogate
data which looks just like reality ought to, if the model is true. We then see
how much better we could expect the nonparametric model to fit under the
parametric model. If the non-parametric model fits the actual data much better
than this, we can reject the parametric model with high confidence: it’s really
unlikely that we’d see that big an improvement from using the nonparametric
model just by luck.6

Here is an example to show this in action. First, let’s detect a reasonably
subtle nonlinearity. The function g(x) from the previous example is nonlinear.
(Actually, g(x) = log x + 1.) Figure 7 shows the regression function and the
data (yet again). The nonlinearity is clear with the curve to guide the eye, but
fairly subtle.

A simple linear regression actually looks pretty good:

> summary(lm(y~x))

Call:
lm(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max

-0.38063 -0.10262 0.00561 0.10158 0.43561

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.21141 0.01739 12.16 <2e-16 ***
x 0.42427 0.01003 42.29 <2e-16 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1512 on 299 degrees of freedom
Multiple R-squared: 0.8568,Adjusted R-squared: 0.8563
F-statistic: 1788 on 1 and 299 DF, p-value: < 2.2e-16

R2 is ridiculously high — over 85% of the variance is predicted by the line. The
p-value reported by R is also very, very low, which seems good, but remember
all this really means is “a sloped line is definitely better here than a flat line”
(Figure 8)

The MSE of the linear fit is 0.0227:
6As usual with p-values, this is not symmetric. A high p-value might mean that the true

regression function is very close to f(x; θ), or it might just mean that we don’t have enough
data to draw conclusions.

14

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

Figure 7: True regression curve (grey) and data points (circles). The curve
g(x) = log x + 1.

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

y

Figure 8: As previous figure, but adding the least-squares regression line
(dashed). Compare to the bottom panel of Figure 6.

16

> mean((lm(y~x)$residuals)^2)
[1] 0.02272178

Using the same ksmooth fit as before for the nonparametric regression, the MSE
is smaller, 0.0186.

> mean((y - ksmooth(x,y,"normal",0.4)$y)^2)
[1] 0.01860447

So tobs = 0.004

> t.obs = mean((lm(y~x)$residuals)^2)
- mean((y - ksmooth(x,y,"normal",0.4)$y)^2)

Now we need to simulate from the fitted parametric model. To do this we need
the coefficients and the estimated noise level. We get them thus:

coefs = lm(y~x)$coefficients
sigma.hat = summary(lm(y~x))$sigma

Now we define simulation functions:

simul.lm = function(x) {coefs[1]+x*coefs[2] + rnorm(length(x),0,sigma.hat)}

This takes a vector of real numbers, treats them as inputs to the linear model,
and gives us the corresponding (random) outputs. We don’t really care about
these values, however, just about the fits.

calc.T = function(x) {
y.sim = simul.lm(x)
MSE.p = mean((lm(y.sim~x)$residuals)^2)
nonparam.fit = cv.ksmooth(x,y.sim,bandwidths=(1:50)/50)
MSE.np = mean((y.sim - nonparam.fit$y)^2)
return(MSE.p - MSE.np)

}

This uses the cv.ksmooth function defined earlier to pick the bandwidth by
cross-validation on the simulated data.

Now we just call calc.T a lot to get a sampling distribution for T under the
null hypothesis.

null.dist.T = replicate(1000,calc.T(x))

This takes some time, because each replication involves not just generating a
new simulation sample, but also using ten-fold cross-validation to pick a band-
width, which means that the simulated data undergoes ten random divisions
into training and testing sets.

(While the computer is thinking, look at the command a little more closely.
It leaves the x values alone, and only uses simulation to generate new y values.
This is appropriate here because x was chosen deterministically, on a regular

17

grid. If the model we were testing specified a distribution for x, we should
generate x each time we invoke calc.T. If the specification is vague, like “x is
IID” but of no particular distribution, then use the bootstrap. The command
would be something like

replicate(1000,calc.T(sample(x,size=length(x),replace=TRUE)))

to draw a different bootstrap sample of x each time.)
When it’s done, we can plot the distribution and see that the observed value

tobs is pretty far out along the right tail (Figure 9). This tells us that it’s very
unlikely that ksmooth would improve so much on the linear model if the latter
were true. In fact, we’d see that big an improvement only

> sum(null.dist.T > t.obs)/1000
[1] 0.018

1.8% of the time. We can thus reject the linear model pretty confidently.
As a second example, let’s suppose that the linear model is right — then

the test should give us a high p-value. So let us stipulate that in reality

Y = 0.2 + 0.5x + η

with η ∼ N (0, 0.152). Figure 10 shows data from this, of the same size as before.
Repeating the same exercise as before, we get that tobs = 0.0015, together

with a slightly different null distribution (Figure 11). Now the p-value is a much
higher 12%, which one would be quite rash to reject.

2.1 Why Use Parametric Models At All?

It might seem by this point that there is little point to using parametric models
at all. Either our favorite parametric model is right, or it isn’t. If it is right, then
a consistent nonparametric estimate will eventually approximate it arbitrarily
closely. If the parametric model is wrong, it will not self-correct, but the non-
parametric estimate will eventually show us that the parametric model doesn’t
work. Either way, the parametric model seems superfluous.

There is an escape from this dilemma, by means of the bias-variance trade-
off.7 Low-dimensional parametric models have potentially high bias (if the real
regression curve is very different from what the model posits), but low variance
(because there isn’t that much to estimate). Non-parametric regression mod-
els have low bias (they’re flexible) but high variance (they’re flexible). If the
parametric model is true, it can converge faster than the non-parametric one.
Even if the parametric model isn’t quite true, the lower variance can still make
it beat out the non-parametric model in over-all generalization error.

7Actually, there is another way out as well. If the parametric model actually represents
our idea about the mechanism generating the data, then its parameters are substantively,
“physically” meaningful and interesting, and the non-parametric smoothing doesn’t capture
that. However, this situation is so rare in data mining, as opposed to scientific inference, that
I won’t go further into this.

18

Histogram of null.dist.T

null.dist.T

Fr
eq
ue
nc
y

0.000 0.002 0.004 0.006 0.008

0
20

40
60

80

hist(null.dist.T,n=101)
abline(v=t.obs)

Figure 9: Distribution of T = MSEp − MSEnp for data simulated from the
parametric model. The vertical line mark the observed value. Notice that the
mode is positive and the distribution is right-skewed; this is typical.

19

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

y

Figure 10: Data from the linear model (true regression line in grey).

20

Histogram of null.dist.T

null.dist.T

Fr
eq
ue
nc
y

0.000 0.002 0.004 0.006

0
20

40
60

80

Figure 11: As in Figure 9, but using the data and fits from Figure 10.

21

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

x

h(
x)

Figure 12: Graph of 0.2 + 1
2

(
1 + sin x

10

)
x over [0, 3].

To illustrate, suppose that the true regression function is

E [Y |X = x] = 0.2 +
1
2

(
1 +

sinx

10

)
x

This is very nearly linear over small ranges — say x ∈ [0, 3] (Figure 12).
I will use the fact that I know the true model here to calculate the actual

expected generalization error (by averaging over many samples).

nearly.linear.out.of.sample = function(n) {
x=seq(from=0,to=3,length.out=n)
y = h(x) + rnorm(n,0,0.15)
y.new = h(x) + rnorm(n,0,0.15)
lm.mse = mean((lm(y~x)$fitted.values - y.new)^2)

22

np.mse = mean((cv.ksmooth(x,y,(1:50)/50)$y - y.new)^2)
return(c(lm.mse,np.mse))

}

nearly.linear.generalization = function(n,m=100) {
raw = replicate(m,nearly.linear.out.of.sample(n))
reduced = rowMeans(raw)
return(reduced)

}

Figure 13 shows that, out to a fairly substantial sample size (≈ 500), the
lower bias of the non-parametric regression is systematically beaten by the lower
variance of the linear model — though admittedly not by much.

23

0 100 200 300 400 500

0.
00

0.
05

0.
10

0.
15

0.
20

n

R
M

S
 g

en
er

al
iz

at
io

n
er

ro
r

sizes = c(5,10,15,20,25,30,50,100,200,500)
generalizations = sapply(sizes,nearly.linear.generalization)
plot(sizes,sqrt(generalizations[1,]),ylim=c(0,0.22),type="l",

xlab="n",ylab="RMS generalization error")
lines(sizes,sqrt(results[2,]),lty=2)

Figure 13: Root-mean-square generalization error for linear model (solid line)
and kernel smoother (dashed line), fit to the same sample of the indicated size.
The true regression curve is as in 12, and observations are corrupted by IID
Gaussian noise with σ = 0.15. The cross-over after which the nonparametric
regressor has better generalization performance happens shortly before n = 500.

24

