Classification and Regression Trees

36-350, Data Mining
27 October 2008

READING: Textbook, sections 10.5 and 5.2 (in that order)

Having built up increasingly complicated models for regression, I'll now
switch gears and introduce a class of nonlinear predictive model which at first
seems too simple to possible work, namely prediction trees. These have two
varieties, regression trees, which we’ll emphasize today, and classification
trees, the subject of the next lecture. Then we’ll talk about combining trees.

The basic idea is very simple. We want to predict a response or class Y from
inputs X1, X»,...X,. We do this by building a tree. At each internal node in
the tree, we apply a binary test to one of the inputs, say X;. Depending on the
outcome of the test, we go to either the left or the right sub-branch of the tree.
Eventually we come to a leaf node, where we make an actual prediction. This
is some kind of aggregation of all the training data points which reach that leaf.
Figure 1 should help clarify this.

Why do this? Predictors like linear or polynomial regression are global
models, where a single predictive formula is supposed to hold over the entire
data space. When the data has lots of features which interact in complicated,
nonlinear ways, assembling a single global model can be very difficult, and hope-
lessly confusing when you do succeed. Some of the non-parametric smoothers try
to fit models locally and then paste them together, but again they can be hard
to interpret. An alternative approach to nonlinear regression is to sub-divide,
or partition, the space into smaller regions, where the interactions are more
manageable. We then partition the sub-divisions again — this is recursive
partitioning, as in hierarchical clustering — until finally we get to chunks of
the space which are so tame that we can fit simple models to them. The global
model thus has two parts: one is just the recursive partition, the other is a
simple model for each cell of the partition.

Now look back at Figure 1 and the description which came before it. Predic-
tion trees use the tree to represent the recursive partition. Each of the terminal
nodes, or leaves, of the tree represents a cell of the partition, and has attached
to it a simple model which applies in that cell only. A point x belongs to a
leaf if x falls in the corresponding cell of the partition. To figure out which
cell we are in, we start at the root node of the tree, and ask a sequence of
questions about the features. The interior nodes are labeled with questions, and
the edges or branches between them labeled by the answers. Which question we

Decision Tree: The Obama-Clinton Divide

In the nominating
contests so far, Senator
Barack Obama has won the
vast majority of counties

Is & county
more than
20 percent black?

|

with large black or highly
educated populations.
Senator Hillary Rodham
Clinton has a commanding
lead in less-educated
counties dominated by
whites. Follow the arrows
for a more detailed split.

And is the high school
graduation rate higher
than 78 percent?

I\

NO There are not

YES This county

many African- has a large
Americans in this African-American
county. population.

&

= NO This isacounty YES Thisisa ltJhImma M:fl
4 with less-educated county with more e connties
\ f; wolers, educated voters 383 to 70.
And is the high school
Clinton wins graduation rate higher
these counties than 87 percent?
704 to 89. |
NO T8 1o 87 YES Thisis a
percent have highly educated
a diploma. counly. i
And where is the county? Gk .
: ma wins
Mortheast or South 1 West or Midwest these countles
185 to 36.

£

In 2000, were many

Clinton wins households poor?
these counties .
182 to 79.
YES Al least NO Al lzast
47% earned 53% earned
less than more than
$30,000 $30,000.
Clinton wins i
these counties What's the population
52 to 25. density?

In 2004, did Bush beat Kerry badly?
(by more than 16.5 percentage points)

Mote. Chart excludes Florida
and Michigan, County-leves
=ults are not availaole in

A% =L
Mexico, Morth
1a or Maine. Texas

hes ara included twce;

e

Daka

Clinton wins
these counties
48 to 13.

Sowurces: Election results wa The Associated Press: Cansus Bureau: Dave Leip's Atlas of LS. Presidential Elections

Wery
Repub-
lican

=t

Vary =815

rural people i
per sq.
mile Obama wins

201 to 83,

=

Obama wins
these counties
56 to 35.

these counties

AMANDA COK}
THE NEW YORK TIMES

Figure 1: Classification tree for county-level outcomes in the 2008 Democratic Party
primary (as of April 16), by Amanada Cox for the New York Times.
2

ask next depends on the answers to previous questions. In the classic version,
each question refers to only a single attribute, and has a yes or no answer, e.g.,
“Is HSGrad > 0.787” or “Is Region == MIDWEST?” Notice that the variables
do not all have to be of the same type; some can be continuous, some can be
discrete but ordered, some can be categorical, etc. You could do more-than-
binary questions, but that can always be accommodated as a larger binary tree.
Somewhat more useful would be questions which involve two or more variables,
but we’ll see a way to fake that in the lecture on multiple trees.

That’s the recursive partition part; what about the simple local models?
For classic regression trees, the model in each cell is just a constant estimate of
Y. That is, suppose the points (z;,¥;), (z2,¥2), ... (z¢, y.) are all the samples
belonging to the leaf-node I. Then our model for [is just § = %Zle 1, the
sample mean of the response variable in that cell. This is a piecewise-constant
model.! There are several advantages to this:

e Making predictions is fast (no complicated calculations, just looking up
constants in the tree)

e It’s easy to understand what variables are important in making the pre-
diction (look at the tree)

e If some data is missing, we might not be able to go all the way down the
tree to a leaf, but we can still make a prediction by averaging all the leaves
in the sub-tree we do reach

e The model gives a jagged response, so it can work when the true regression
surface is not smooth. If it is smooth, though, the piecewise-constant
surface can approximate it arbitrarily closely (with enough leaves)

e There are fast, reliable algorithms to learn these trees

Figure 2 shows an example of a regression tree, which predicts the price of
cars. (All the variables have been standardized to have mean 0 and standard
deviation 1.) The mean squared error of the tree (0.15 in the standardized price
units) is significantly better than that of a linear regression on the same data
(0.20), even when including an interaction between Wheelbase and Horsepower
< 0. (Including an interaction between Wheelbase and Horsepower actually
makes things worse.)

The tree correctly represents the interaction between Horsepower and Wheelbase.
When Horsepower > 0.6, Wheelbase no longer matters. When both are equally
important, the tree switches between them. (See Figure 3.)

Once we fix the tree, the local models are completely determined, and easy
to find (we just average), so all the effort should go into finding a good tree,

1We could instead fit, say, a different linear regression for the response in each leaf node,
using only the data points in that leaf (and using dummy variables for non-quantitative
features). This would give a piecewise-linear model, rather than a piecewise-constant one. If
we’ve built the tree well, however, there are only a few, closely-spaced points in each leaf, so
the regression surface would be nearly constant anyway.

>0.6

(19) Price =1.2

Horsepower
>-0.2 2008 — (21) Price = 0.42
<0.6 Wheelbase
<0.08 (14) Price = 0.055
Horsepower
>-0.07 (8) Price = -0.15
Wheelbase
<02 >-1.3 (21) Price = -0.89
<-0.07 Horsepower
<-1.3

(9) Price =-1.6

Figure 2: Regression tree for predicting price of 1993-model cars. All features
have been standardized to have zero mean and unit variance. Note that the order
in which variables are examined depends on the answers to previous questions.
The numbers in parentheses at the leaves indicate how many cases (data points)
belong to each leaf.

Figure 3: The partition of the data implied by the regression tree from Figure 2.
Notice that all the dividing lines are parallel to the axes, because each internal
node checks whether a single variable is above or below a given value. (We were
lucky here that only two variables appeared in the fitted tree, otherwise it would
be hard to visualize the partition — except in tree form.)

which is to say into finding a good partitioning of the data. We’ve already seen,
in clustering, some ways of doing this, and we're going to apply the same ideas
here.

In clustering, remember, what we would ideally do was maximizing I[C; X],
the information the cluster gave us about the features X. With regression trees,
what we want to do is maximize I[C;Y], where Y is now the response variable,
and C are now is the variable saying which leaf of the tree we end up at. Once
again, we can’t do a direct maximization, so we again do a greedy search. We
start by finding the one binary question which maximizes the information we
get about Y'; this gives us our root node and two daughter nodes. At each
daughter node, we repeat our initial procedure, asking which question would
give us the maximum information about Y, given where we already are in the
tree. We repeat this recursively.

One of the problems with clustering was that we needed to balance the
informativeness of the clusters with parsimony, so as to not just put every point
in its own cluster. Similarly, we could just end up putting every point in its own
leaf-node, which would not be very useful. A typical stopping criterion is to
stop growing the tree when further splits gives less than some minimal amount
of extra information, or when they would result in nodes containing less than,
say, five percent of the total data. (We will come back to this in a little bit.)

We have only seen entropy and information defined for discrete variables.?
You can define them for continuous variables, and sometimes the continuous
information is used for building regression trees, but it’s more common to do the
same thing that we did with clustering, and look not at the mutual information
but at the sum of squares. The sum of squared errors for a tree T is

S= > D (i-me)

c€leaves(T) i€c

where m, = izi@ yi, the prediction for leaf c. Just as with clustering, we can

re-write this as
S = Z n.V,

c€leaves(T)

where V, is the within-leave variance of leaf ¢. So we will make our splits so as
to minimize S.
The basic regression-tree-growing algorithm then is as follows:

1. Start with a single node containing all points. Calculate m. and S.

2. If all the points in the node have the same value for all the input variables,
stop. Otherwise, search over all binary splits of all variables for the one
which will reduce S as much as possible. If the largest decrease in S
would be less than some threshold ¢, or one of the resulting nodes would
contain less than ¢ points, stop. Otherwise, take that split, creating two
new nodes.

2Unless you read the paper by David Feldman, that is.

3. In each new node, go back to step 1.

Trees use only one feature (input variable) at each step. If multiple features
are equally good, which one is chosen is basically a matter of chance. (In the
example, it turns out that Weight is just as good as Wheelbase: Figure 4.)
When we come to multiple trees, we’ll see a way of actually exploiting this.

One problem with the straight-forward algorithm I've just given is that it
can stop too early, in the following sense. There can be variables which are
not very informative themselves, but which lead to very informative subsequent
splits. (This was the point of all our talk about interactions when we looked at
information theory.) This suggests a problem with stopping when the decrease
in S becomes less than some §. Similar problems can arise from arbitrarily
setting a minimum number of points ¢ per node.

A more successful approach to finding regression trees uses the idea of cross-
validation from last time. We randomly divide our data into a training set and
a testing set, as in the last lecture (say, 50% training and 50% testing). We then
apply the basic tree-growing algorithm to the training data only, with ¢ = 1
and § = 0 — that is, we grow the largest tree we can. This is generally going to
be too large and will over-fit the data. We then use cross-validation to prune
the tree. At each pair of leaf nodes with a common parent, we evaluate the
error on the testing data, and see whether the sum of squares would be smaller
by remove those two nodes and making their parent a leaf. This is repeated
until pruning no longer improves the error on the testing data. The reason this
is superior to arbitrary stopping criteria, or to rewarding parsimony as such, is
that it directly checks whether the extra capacity (nodes in the tree) pays for
itself by improving generalization error. If it does, great; if not, get rid of it.
This is something we can do with prediction trees that we couldn’t really do
with (say) hierarchical clustering, because trees make predictions we can test
on new data, and the clustering techniques we looked at before do not.

There are lots of other cross-validation tricks for trees. One cute one is to
alternate growing and pruning. We divide the data into two parts, as before, and
first grow and then prune the tree. We then exchange the role of the training
and testing sets, and try to grow our pruned tree to fit the second half. We then
prune again, on the first half. We keep alternating in this manner until the size
of the tree doesn’t change.

>1.4

(6) Price =1.8
>0.6 Horsepower
<14 (13) Price = 0.95
Horsepower
>=0.2 —=208 __ (45) price = 0.25
20.08 | \\heelbase
<0.6 L <08 (6 Price =0.82
Wheelbase
Horsepower | <0.08 (14) Price = 0.055
— 204 o) price = -0.16
Weight
<=0.2 —=>=18 50 Price = —0.92
=04 Horsepower
<-1.3

(9) Price =-1.6

Figure 4: Another regression tree for the price of cars, where Weight was used
in place of Wheelbase at the second level. The two perform equally well.

