
Classification Trees

36-350, Data Mining

29 Octber 2008

Classification trees work just like regression trees, only they try to predict a
discrete category (the class), rather than a numerical value. The variables which
go into the classification — the inputs — can be numerical or categorical them-
selves, the same way they can with a regression tree. They are useful for the
same reasons regression trees are — they provide fairly comprehensible predic-
tors in situations where there are many variables which interact in complicated,
nonlinear ways.

1 An Example: Mushrooms

A field guide to mushrooms lists 5416 varieties, with 22 categorical attributes
for each, as well as the class, which is “edible” or “poisonous”. The first row:

cap.shape cap.surface cap.color bruises odor gill.attachment gill.spacing
convex fibrous red bruises none free close

gill.size gill.color stalk.shape stalk.root stalk.surface.above.ring
broad purple tapering bulbous smooth

stalk.surface.below.ring stalk.color.above.ring stalk.color.below.ring
smooth gray pink

veil.type veil.color ring.number ring.type spore.print.color population
partial white one pendant brown several

habitat class
woods edible.

Despite all the data, the classification tree is simple (Figure 1). It manages to
classify perfectly using an OR-rule: if a mushroom smells bad, OR it has green
spores, OR it grows in clusters, then it is poisonous.1

2 Growing Classification Trees

We find classification trees in almost the same way we found regression trees:
we start with a single node, and then look for the binary distinction which gives

1Apparently-perfect classifications like this should make one suspicious. I have not run
this by a mycologist to see if it makes sense, though it is the kind of result which is worth
running by a mycologist. Anyway, if you go mushroom-hunting on this basis and get sick and
die, don’t blame me.

1

 odor

almond,anise,none

 spore.print.color

black,brown,purple,white population

abundant,numerous,scattered,several,solitary (2370) class = edible. (100%)

clustered (9) class = poisonous. (100%)

green (41) class = poisonous. (100%)

creosote,foul,musty,pungent (1383) class = poisonous. (100%)

Figure 1: Classification tree for North American wild mushrooms.

2

us the most information about the class. We then take each of the resulting new
nodes and repeat the process there, continuing the recursion until we reach some
stopping criterion. The resulting tree will often be too large (i.e., over-fit), so
we prune it back using (say) cross-validation. The differences from regression-
tree growing have to do with (1) how we measure information, (2) what kind of
predictions the tree makes, and (3) how we measure predictive error.

2.1 Measuring Information

The response variable Y is categorical, so we can use information theory to
measure how much we learn about it from knowing the value of another discrete
variable A:

I[Y ;A] =
∑

a

Pr (A = a) I[Y ;A = a] (1)

where
I[Y ;A = a] = H[Y]−H[Y |A = a] (2)

and you remember the definitions of entropy H[Y] and conditional entropy
H[Y |A = a].

I[Y ;A = a] is how much our uncertainty about Y decreases from knowing
that A = a. (Less subjectively: how much less variable Y becomes when we go
from the full population to the sub-population where A = a.) I[Y ;A] is how
much our uncertainty about Y shrinks, on average, from knowing the value of
A.

For classification trees, A isn’t (necessarily) one of the predictors, but rather
the answer to some question, generally binary, about one of the predictors X,
i.e., A = 1A(X) for some set A. This doesn’t change any of the math above,
however. So we chose the question in the first, root node of the tree so as to
maximize I[Y ;A], which we calculate from the formula above, using the relative
frequencies in our data to get the probabilities.

When we want to get good questions at subsequent nodes, we have to take
into account what we know already at each stage. Computationally, we do
this by computing the probabilities and informations using only the cases in
that node, rather than the complete data set. (Remember that we’re doing
recursive partitioning, so at each stage the sub-problem looks just like a smaller
version of the original problem.) Mathematically, what this means is that if
we reach the node when A = a and B = b, we look for the question C which
maximizes I[Y ;C|A = a,B = b], the information conditional on A = a, B = b.
Algebraically,

I[Y ;C|A = a,B = b] = H[Y |A = a,B = b]−H[Y |A = a,B = b, C] (3)

Computationally, rather than looking at all the cases in our data set, we just
look at the ones where A = a and B = b, and calculate as though that were
all the data. Also, notice that the first term on the right-hand side, H[Y |A =
a,B = b], does not depend on the next question C. So rather than maximizing
I[Y ;C|A = a,B = b], we can just minimize H[Y |A = a,B = b, C].

3

2.2 Making Predictions

There are two kinds of predictions which a classification tree can make. One
is a point prediction, a single guess as to the class or category: to say “this
is a flower” or “this is a tiger” and nothing more. The other idea is to give a
probability for each of the classes. This is slightly more general, because if we
need to extract a point prediction from a probability forecast we can always do
so, but we can’t go in the other direction.

For probability forecasts, each terminal node in the tree gives us a distribu-
tion over the classes. If the terminal node corresponds to the sequence of answers
A = a, B = b, . . . Q = q, then ideally this would give us Pr (Y = y|A = a,B = b, . . . Q = q)
for each possible value y of the response. A simple way to get close to this is to
use the empirical relative frequencies of the classes in that node. E.g., if there
are 33 cases at a certain leaf, 22 of which are tigers and 11 of which are flowers,
the leaf should predict “tiger with probability 2/3, flower with probability 1/3”.
This is the maximum likelihood estimate of the true probability distribution,
and we’ll write it P̂r (·).

(Incidentally, while the empirical relative frequencies are consistent estimates
of the true probabilities under many circumstances, nothing particularly com-
pells us to use them. When the number of classes is large relative to the sample
size, we may easily fail to see any samples at all of a particular class. The
empirical relative frequency of that class is then zero. This is good if the actual
probability is zero, not so good otherwise. (In fact, under the negative log-
likelihood error discussed below, it’s infinitely bad, because we will eventually
see that class, but our model will say it’s impossible.) The empirical relative
frequency estimator is in a sense too reckless in following the data, without
allowing for the possibility that it the data are wrong; it may under-smooth.
Other probability estimators “shrink away” or “back off” from the empirical
relative frequencies. One popular approach is to add 1/2 to the empirical count
of each class (even for classes not observed in the sample), and then divide by
the sum of these inflated counts. Exercise: Can you show, using the law of
large numbers, that this is also consistent?)

For point forecasts, the best strategy depends on the loss function. If it is
just the mis-classification rate, then the best prediction at each leaf is the class
with the highest conditional probability in that leaf. With other loss functions,
we should make the guess which minimizes the expected loss. But this leads us
to the topic of measuring error.

2.3 Measuring Error

There are three common ways of measuring error for classification trees, or
indeed other classification algorithms: misclassification rate, expected loss, and
normalized negative log-likelihood, a.k.a. cross-entropy.

2.3.1 Misclassification Rate

We’ve already seen this: it’s the fraction of cases assigned to the wrong class.

4

2.3.2 Average Loss

The idea of the average loss is that some errors are more costly than others. E.g.,
for the mushrooms, the possible values of Y were “edible” and “poisonous”. If
we think an edible mushroom is poisonous, we don’t eat it and miss out on a
tasty treat. The consequences of thinking a poisonous mushroom is edible are
much worse! There will be a different cost for each combination of the real class
and the guessed class; write Lij for the loss we incur by saying that the class is
j when it’s really i.

For an observation x, the classifier gives class probabilities Pr (Y = i|X = x).
Then the expected cost of predicting j is:

Loss(Y = j|X = x) =
∑

i

LijPr (Y = i|X = x)

Suppose the cost matrix is biased against class “edible”:

prediction: “poisonous” prediction: “edible”
truth “poisonous” 0 10

truth “edible” 1 0

We run an observation through the tree and wind up with class probabilities
(0.4, 0.6). The most likely class is “edible”, but it is not the most cost-effective
decision. The expected cost of predicting “poisonous” is 0.4 ∗ 0 + 0.6 ∗ 1 =
0.6, while the expected cost of predicting “edible” is 0.4 ∗ 10 + 0.6 ∗ 0 = 4.
The probability of Y = “edible” must be 10 times higher than that of Y =
“poisonous” before “edible” is a cost-effective prediction.

Notice that if our estimate of the class probabilities is very bad, we can go
through the math above correctly, but still come out with the wrong answer. If
our estimates were exact, however, we’d always be doing as well as we could,
given the data.

You can show (and will, in the homework!) that if the costs are symmetric,
we get the mis-classification rate back as our error function, and should always
predict the most likely class.

2.3.3 Likelihood and Cross-Entropy

Finally, the normalized negative log-likelihood is a way of looking not just at
whether the model made the wrong call, but whether it made the wrong call
with confidence or tentatively. (“Often wrong, never in doubt” is not a good
idea.) More precisely, this loss function for a model Q is

L(data, Q) = − 1
n

n∑
i=1

log Q(Y = yi|X = xi)

where Q(Y = y|X = x) is the conditional probability the model predicts. If
perfect classification were possible, i.e., if Y were a function of X, then the best
classifier would give the actual value of Y a probability of 1, and L = 0. If

5

there is some irreducible uncertainty in the classification, then the best possible
classifier would give L = H[Y |X], the conditional entropy of Y given the inputs
X. Less-than-ideal predictors have L > H[Y |X]. To see this, try re-write L so
we sum over values rather than data-points:

L = − 1
n

∑
x,y

N(Y = y, X = x) log Q(Y = y|X = x)

= −
∑
x,y

P̂r (Y = y, X = x) log Q(Y = y|X = x)

= −
∑
x,y

P̂r (X = x) P̂r (Y = y|X = x) log Q(Y = y|X = x)

= −
∑

x

P̂r (X = x)
∑

y

P̂r (Y = y|X = x) log Q(Y = y|X = x)

If the quantity in the log was Pr (Y = y|X = x), this would be H[Y |X]. Since
it’s the model’s estimated probability, rather than the real probability, it turns
out that this is always larger than the conditional entropy. L is also called the
cross-entropy for this reason.

There is a slightly subtle issue here about the difference between the in-
sample loss, and the expected generalization error or risk. N(Y = y, X =
x)/n = P̂r (Y = y, X = x), the empirical relative frequency or empirical proba-
bility. The law of large numbers says that this converges to the true probability,
N(Y = y, X = x)/n → Pr (Y = y, X = x) as n →∞. Consequently, the model
which minimizes the cross-entropy in sample may not be the one which min-
imizes it on future data, though the two ought to converge. Generally, the
in-sample cross-entropy is lower than its expected value.

Notice that to compare two models, or the same model on two different data
sets, etc., we do not need to know the true conditional entropy H[Y |X]. All we
need to know is that L is smaller the closer we get to the true class probabilities.
If we could get L down to the cross-entropy, we would be exactly reproducing
all the class probabilities, and then we could use our model to minimize any loss
function we liked (as we saw above).2

2Technically, if our model gets the class probabilities right, then the model’s predictions
are just as informative as the original data. We then say that the predictions are a sufficient
statistic for forecasting the class. In fact, if the model gets the exact probabilities wrong, but
has the correct partition of the feature space, then its prediction is still a sufficient statistic.
Under any loss function, the optimal strategy can be implemented using only a sufficient
statistic, rather than needing the full, original data. This is an interesting but much more
advanced topic; see, e.g., David Blackwell and M. A. Girshick, Theory of Games and Statistical
Decisions (New York: Wiley, 1954; Dover Books reprint, 1979) for details.

6

